Abstract
Patient specific treatments for different cancers are currently being actively addressed through nuclear medicine. More recently, the identification of biomarker namely; prostate-specific membrane antigen (PSMA) expressed on the prostate cancer cell surface has been considered as a turning point in prostate cancer management using radiopharmaceuticals. In this treatment method, apart from radionuclide, organic ligands that target PSMA constitute an essential component. PSMA-11 and PSMA-617 are two important ligands that form the radiopharmaceuticals, [68Ga]Ga-PSMA-11, [177Lu]Lu-PSMA-617, which are currently powering the prostate cancer management, especially metastatic castration resistant prostate cancer (mCRPC) in most part of the world. Identification of efficient synthetic routes towards these highly expensive ligands is an important prerequisite to make this treatment modality more popular. In this account, the synthetic challenges that we circumvent during the solution phase synthesis of PSMA-11 and PSMA-617, through different chemical synthetic routes are demonstrated. Post-synthesis, both the ligands, PSMA-11 and PSMA-617 were successfully radiolabelled using 68Ga, and 177Lu, respectively, to generate corresponding labelled products [68Ga]Ga-PSMA-11, and [177Lu]Lu-PSMA-617, in good radiochemical purity.
Acknowledgements
KSAK is thankful to Prof. B. S. Patro, Head, Bio-Organic Division, and Prof. P. A. Hassan, Associate Director, Bio-Science Group for their encouragement and support. Help and support from former Directors of Bio-Science Group, particularly, Prof. S. K. Nayak, Prof. V. P. Venugopalan, Prof. S. K. Ghosh, and Prof. S. Chattopadhyay are thankfully acknowledged. KSAK is highly thankful to Dr. Madhava B. Mallia (RPhD), for his help and enthusiasm towards the program.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors states no conflict of interest.
-
Research funding: None declared.
-
Data availability: The data can be obtained on request from the corresponding author.
References
1. GBD 2019 Asia All Cancers Collaborators. Temporal Patterns of Cancer Burden in Asia, 1990–2019: A Systematic Examination for the Global Burden of Disease 2019 Study. Lancet Reg. Health Southeast Asia 2024, 21, 100333; https://doi.org/10.1016/j.lansea.2023.100333.Search in Google Scholar PubMed PubMed Central
2. Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J. W.; Comber, H.; Forman, D.; Bray, F. Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries in 2012. Eur. J. Cancer. 2013, 49, 1374–1403. https://doi.org/10.1016/j.ejca.2012.12.027.Search in Google Scholar PubMed
3. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statsitics, 2015. CA Cancer J. Clin. 2015, 65, 5-29. https://doi.org/10.3322/caac.21254.Search in Google Scholar PubMed
4. Hövels, A. M.; Heesakkers, R. A.; Adang, E. M.; Jager, G. J.; Strum, S.; Hoogeveen, Y. L.; Severens, J. L.; Barentsz, J. O. The Diagnostic Accuracy of CT and MRI in the Staging of Pelvic Lymph Nodes in Patients with Prostate Cancer: A Meta-Analysis. Clin. Radiol. 2008, 63, 387–395. https://doi.org/10.1016/j.crad.2007.05.022.Search in Google Scholar PubMed
5. Sarhadi, V. K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. https://doi.org/10.3390/biom12081021.Search in Google Scholar PubMed PubMed Central
6. Qaim, S. M. The Present and Future of Medical Radionuclide Production. Radiochim. Acta 2012, 100, 635–651. https://doi.org/10.1524/ract.2012.1966.Search in Google Scholar
7. Volkert, W. A.; Hoffmann, T. J. Therapeutic Radiopharmaceuticals. Chem. Rev. 1999, 99, 2269–2292. https://doi.org/10.1021/cr9804386.Search in Google Scholar PubMed
8. Sgouros, G.; Bodei, L.; McDevitt, M. R.; Nedrow, J. R. Radiopharmaceutical Therapy in Cancer: Clinical Advances and Challenges. Nat. Rev. 2020, 19, 589–608. https://doi.org/10.1038/s41573-020-0073-9.Search in Google Scholar PubMed PubMed Central
9. Stowell, S. R.; Ju, T.; Cummings, R. D. Protein Glycosylation in Cancer. Annu. Rev. Pathol. 2015, 10, 473–510. https://doi.org/10.1146/annurev-pathol-012414-040438.Search in Google Scholar PubMed PubMed Central
10. Clarke, R. A.; Schirra, H. J.; Catto, J. W.; Lavin, M. F.; Gardiner, R. A. Markers for Detection of Prostate Cancer. Cancers 2010, 2, 1125–1154. https://doi.org/10.3390/cancers2021125.Search in Google Scholar PubMed PubMed Central
11. https://www.fda.gov/news-events/press-announcements/fda-approves-first-psma-targeted-pet-imaging-drug-men-prostate-cancer.Search in Google Scholar
12. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-second-psma-targeted-pet-imaging-drug-men-prostate-cancer.Search in Google Scholar
13. https://www.novartis.com/news/media-releases/novartis-pluvictotm-approved-fda-first-targetted-radioligand-therapy-treatment-progressive-psma-positive-metastatic-castration-resistant-prostate-cancer.Search in Google Scholar
14. Theiss, M.; Wirth, M. P.; Manseck, A.; Frohmuller, H. G. Prognostic Significance of Capsular Invasion and Capsular Penetration in Patients with Clinically Localized Prostate Cancer Undergoing Radical Prostatectomy. Prostate 1995, 27, 13–17. https://doi.org/10.1002/pros.2990270104.Search in Google Scholar PubMed
15. Swanson, G. P.; Lerner, S. P. Positive Margins after Radical Prostatectomy: Implications for Failure and Role of Adjuvant Treatment. Urol. Oncol. 2013, 31, 531–541. https://doi.org/10.1016/j.urolonc.2011.06.007.Search in Google Scholar PubMed
16. Wright, J. L.; Dalkin, B. L.; True, L. D.; Ellis, W. J.; Stanford, J. L.; Lange, P. H.; Lin, D. W. Positive Surgical Margins at Radical Prostatectomy Predict Prostate Cancer Specific Mortality. J. Urol. 2010, 183, 2213–2218. https://doi.org/10.1016/j.juro.2010.02.017.Search in Google Scholar PubMed PubMed Central
17. Saranchuk, J. W.; Kattan, M. W.; Elkin, E.; Touijer, A. K.; Scardino, P. T.; Eastham, J. A. Achieving Optimal Outcomes after Radical Prostatectomy. J. Clin. Oncol. 2005, 23, 4146–4151. https://doi.org/10.1200/jco.2005.12.922.Search in Google Scholar PubMed
18. Penson, D. F.; McLerran, D.; Feng, Z.; Li, L.; Albertsen, P. C.; Gilliland, F. D.; Hamilton, A.; Hoffman, R. M.; Stephenson, R. A.; Potosky, A. L.; Stanford, J. L. 5-Year Urinary and Sexual Outcomes after Radical Prostatectomy: Results from the Prostate Cancer Outcomes Study. J. Urol. 2005, 173, 1701–1705. https://doi.org/10.1097/01.ju.0000154637.38262.3a.Search in Google Scholar PubMed
19. Kundu, S. D.; Roehl, K. A.; Eggener, S. E.; Antenor, J. A.; Han, M.; Catalona, W. J. Potency, Continence and Complications in 3,477 Consecutive Radical Retro- Pubic Prostatectomies. J. Urol. 2004, 172, 2227–2231. https://doi.org/10.1097/01.ju.0000145222.94455.73.Search in Google Scholar PubMed
20. Burnett, A. L.; Aus, G.; Canby-Hagino, E. D.; Cookson, M. S.; D’Amico, A. V.; Dmo-chowski, R. R.; Eton, D. T.; Forman, J. D.; Goldenberg, S. L.; Hernandez, J.; Higano, C. S.; Kraus, S.; Liebert, M.; Moul, J. W.; Tangen, C.; Thrasher, J. B.; Thompson, I. Erectile Function Outcome Reporting after Clinically Localized Prostate Cancer Treatment. J. Urol. 2007, 178, 597–601. https://doi.org/10.1016/j.juro.2007.03.140.Search in Google Scholar PubMed
21. Thompson, I.; Thrasher, J. B.; Aus, G.; Burnett, A. L.; Canby-Hagino, E. D.; Cookson, M. S.; D’Amiko, A. V.; Dmochowski, R. R.; Eton, D. T.; Forman, J. D.; Goldenberg, S. L.; Hernandez, J.; Higano, C. S.; Kraus, S. R.; Moul, J. W.; Tangen, C. M. Guideline for the Management of Clinically Localized Prostate Cancer: 2007 Update. J. Urol. 2007, 177, 2106–2131. https://doi.org/10.1016/j.juro.2007.03.003.Search in Google Scholar PubMed
22. McClure, T. D.; Margolis, D. J.; Reiter, R. E.; Sayre, J. W.; Thomas, M. A.; Nagarajan, R.; Gulati, M.; Raman, S. S. Use of MR Imaging to Determine Preservation of the Neurovascular Bundles at Robotic-Assisted Laparoscopic Prostatectomy. Radiology 2012, 262, 874–883. https://doi.org/10.1148/radiol.11103504.Search in Google Scholar PubMed
23. Barrett, J. A.; Coleman, R. E.; Goldsmith, S. J.; Vallabhajosula, S.; Petry, N. A.; Cho, S.; Armor, T.; Stubbs, J. B.; Maresca1, K. P.; Stabin, M. G.; Joyal, J. L.; Eckelman, W. C.; Babich, J. W. First-in-Man Evaluation of 2 High-Affinity PSMA-Avid Small Molecules for Imaging Prostate Cancer. J. Nucl. Med. 2013, 54, 380–387. https://doi.org/10.2967/jnumed.112.111203.Search in Google Scholar PubMed
24. Maffioli, L.; Florimonte, L.; Costa, D. C.; Correia, C. J.; Grana, C.; Luster, M.; Bodei, L.; Chinol, M. Reviews Diagnostic and Therapeutic Management of Locally Advanced and Advanced Prostate Cancer. J. Nucl. Med. Mol. Imaging 2015, 59, 420–438.Search in Google Scholar
25. Santoni, M.; Scarpelli, M.; Mazzucchelli, R.; Lopez-Beltran, A.; Cheng, L.; Cascinu, S.; Montironi, R. Targeting Prostate-specific Membrane Antigen for Personalized Therapies in Prostate Cancer: Morphologic and Molecular Backgrounds and Future Promises. J. Biol. Regul. Homeost. Agents 2014, 28, 555–563.Search in Google Scholar
26. Weineisen, M.; Simecek, J.; Schottelius, M.; Schwaiger, M.; Wester, H.-J. Synthesis and Preclinical Evaluation of DOTAGA-Conjugated PSMA Ligands for Functional Imaging and Endoradiotherapy of Prostate Cancer. EJNMMI Res. 2014, 4, 63. https://doi.org/10.1186/s13550-014-0063-1.Search in Google Scholar PubMed PubMed Central
27. Rowe, S. P.; Gorin, M. A.; Allaf, M. E.; Pienta, K. J.; Tran, P. T.; Pomper, M. G.; Ross, A. E.; Cho, S. Y. PET Imaging of Prostate-specific Membrane Antigen in Prostate Cancer: Current State of the Art and Future Challenges. Prostate Cancer Prostatic Dis. 2016, 19, 223–230. https://doi.org/10.1038/pcan.2016.13.Search in Google Scholar PubMed PubMed Central
28. Harada, N.; Kimura, H.; Onoe, S.; Watanabe, H.; Matsuoka, D.; Arimitsu, K.; Ono, M.; Saji, H. Synthesis and Biological Evaluation of Novel 18F-Labeled Probes Targeting Prostate-Specific Membrane Antigen for Positron Emission Tomography of Prostate Cancer. J. Nucl. Med. 2016, 57, 1978–1984. https://doi.org/10.2967/jnumed.116.175810.Search in Google Scholar PubMed
29. Wüstemann, T.; Bauder-Wüst, U.; Schäfer, M.; Eder, M.; Benesova, M.; Leotta, K.; Kratochwil, C.; Haberkorn, U.; Kopka, K.; Mier, W. Design of Internalizing PSMA-Specific Glu-Ureido-Based Radiopharmaceuticals. Theranostics 2016, 6, 1085–1095. https://doi.org/10.7150/thno.13448.Search in Google Scholar PubMed PubMed Central
30. Kelly, J.; Amor-Coarasa, A.; Nikolopoulou, A.; Kim, D.; Williams Jr, C.; Ponnala, S.; Babich, J. W. Synthesis and Pre-clinical Evaluation of a New Class of High-Affinity 18F-Labeled PSMA Ligands for Detection of Prostate Cancer by PET Imaging. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 647–661. https://doi.org/10.1007/s00259-016-3556-5.Search in Google Scholar PubMed PubMed Central
31. Cardinale, J.; Schäfer, M.; Benešová, M.; Bauder-Wüst, U.; Leotta, K.; Eder, M.; Neels, O. C.; Haberkorn, U.; Giesel, F. L.; Kopka, K. Preclinical Evaluation of 18F-PSMA-1007: A New Prostate Specific Membrane Antigen Ligand for Prostate Cancer Imaging. J. Nucl. Med. 2017, 58, 425–431. https://doi.org/10.2967/jnumed.116.181768.Search in Google Scholar PubMed
32. Wester, H. J.; Schottelius, M. PSMA-targeted Radiopharmaceuticals for Imaging and Therapy. Semin. Nucl. Med. 2019, 49, 302–312. https://doi.org/10.1053/j.semnuclmed.2019.02.008.Search in Google Scholar PubMed
33. Kumar, K. S. A.; Mathur, A. Total Chemical Synthesis of PSMA-11: API for 68Ga-PSMA-11 Used for Prostate Cancer Diagnosis. Eur. J. Med. Chem. Rep. 2021, 3, 100014. https://doi.org/10.1016/j.ejmcr.2021.100014.Search in Google Scholar
34. Kumar, K. S. A.; Mathur, A. A Convenient Total Synthesis of PSMA-617: A Prostate Specific Membrane Antigen (PSMA) Ligand for Prostate Cancer Endotherapeutic Applications. Eur. J. Med. Chem. Rep. 2022, 6, 100084. https://doi.org/10.1016/j.ejmcr.2022.100084.Search in Google Scholar
35. Jadvar, H.; Desai, B.; Ji, L.; Conti, P. S.; Dorff, T. B.; Groshen, S. G.; Gross, M. E.; Pinski, J. K.; Quinn, D. I. Prospective Evaluation of 18F-NaF and 18F-FDG PET/CT in Detection of Occult Metastatic Disease in Biochemical Recurrence of Prostate Cancer. Clin. Nucl. Med. 2012, 37, 637–643. https://doi.org/10.1097/rlu.0b013e318252d829.Search in Google Scholar
36. Chen, Y.; Pullambhatla, M.; Foss, C. A.; Byun, Y.; Nimmagadd, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R. C.; Pomper, M. G. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic Acid, [18F]DCFPyL, A PSMA-Based PET Imaging Agent for Prostate Cancer. Clin. Cancer Res. 2011, 17, 7645–7653. https://doi.org/10.1158/1078-0432.ccr-11-1357.Search in Google Scholar
37. Maresca, K. P.; Hillier, S. M.; Femia, F. J.; Keith, D.; Barone, C.; Joyal, J. L.; Zimmerman, C. N.; Kozikowski, A. P.; Barret, J. A.; Eckelman, W. C.; Babich, J. W. A Series of Halogenated Heterodimeric Inhibitors of Prostate Specific Membrane Antigen (PSMA) as Radiolabeled Probes for Targeting Prostate Cancer. J. Med. Chem. 2009, 52, 347–357. https://doi.org/10.1021/jm800994j.Search in Google Scholar PubMed
38. Adhikary, R.; Dawson, P. E. In Si Neutralization Protocols for Boc-SPPS. Methods Mol. Biol. 2020, 2103, 29–40. https://doi.org/10.1007/978-1-0716-0227-0_3.Search in Google Scholar PubMed
39. Fields, G. B.; Lauer-Fields, J. L. Principles and Practice of Solid-Phase Peptide Synthesis’, Synthetic Peptides: A User’s Guide; Oxford Academic: New York, 2002. online edn.10.1093/oso/9780195132618.003.0006Search in Google Scholar
40. Beneˇsová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56, 914–920. https://doi.org/10.2967/jnumed.114.147413.Search in Google Scholar PubMed
41. Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconjugate Chem. 2012, 23, 688–697. https://doi.org/10.1021/bc200279b.Search in Google Scholar PubMed
42. Kumar, K. S. A.; Mathur, A. A Total Chemical Synthesis of PSMA-617: A Ligand for Prostate Cancer Endotherapeutic Applications. Radiochim. Acta 2024. https://doi.org/10.1515/ract-2023-0205.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0280).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2