Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
-
Anster Charles
, Firouzeh Najafi Khosrashahi , Li Ma , Chathurya Munindradasa , Rebecca Hoerres , John D. Lydon , Steven P. Kelley , James Guthrie , David Rotsch , Dmitri Medvedev , Cathy S. Cutler , Yawen Li , D. Scott Wilbur , Heather M. Hennkens und Silvia S. Jurisson
Abstract
Enriched tungsten disulfide (186WS2) was evaluated at increasing proton beam currents (20–50 μA) and times (up to 4 h) on a GE PETtrace cyclotron for production of high specific activity (HSA) 186Re. The HSA 186Re was separated from the irradiated target as [186Re][ReO4]– by a liquid–liquid extraction method and radiolabeled with a new N2S2 ligand (222-MAMA-N-ethylpropionate). The enriched 186W was recovered from the extraction process, analyzed for purity and enrichment, and converted back to the disulfide (186WS2). The results demonstrate that the 186WS2 is an easily pressed target material that can withstand relatively high currents and can be readily recovered and recycled. The 186Re produced was isolated in high specific activity and readily formed the radiotracers [186Re][ReO(222-MAMA-N-ethylpropionate)] and [186Re][Re(CO)3(OH2)3] +.
Funding source: U.S. Department of EnergyOffice of ScienceNuclear PhysicsUniversity of Missouri
Award Identifier / Grant number: Unassigned
Award Identifier / Grant number: Unassigned
Award Identifier / Grant number: Unassigned
Award Identifier / Grant number: Unassigned
Acknowledgments
The authors thank Michael Hall at Essential Isotopes, LLC and Alex Saale at MURR for their assistance with the target irradiations.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors gratefully acknowledge support from the U.S. Department of Energy Isotope Program, managed by the Office of Science for Nuclear Physics under grant DE-SC0018662 (SSJ). This work was supported in part by University of Missouri (MU) Tier 2 funds (HMH/SSJ) and MU Life Sciences Fellowship (AC).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kelkar, S. S., Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879; https://doi.org/10.1021/bc200151q.Suche in Google Scholar
2. Milenic, D. E., Brady, E. D., Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 2004, 3, 488; https://doi.org/10.1038/nrd1413.Suche in Google Scholar
3. Balkin, E. R., Gagnon, K., Dorman, E., Emery, R., Li, Y., Lake Wooten, A., Smith, B. E., Strong, K. T., Pauzauskie, P. J., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process. Radiochim. Acta 2017, 105, 1071; https://doi.org/10.1515/ract-2017-2780.Suche in Google Scholar
4. Moustapha, M. E., Ehrhardt, G. J., Smith, C. J., Szajek, L. P., Eckelman, W. C., Jurisson, S. S. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl. Med. Biol. 2006, 33, 81; https://doi.org/10.1016/j.nucmedbio.2005.09.006.Suche in Google Scholar
5. Ehrhardt, G. J., Blumer, M. E., Su, F. M., Vanderheyden, J. L., Fritzberg, A. R. Experience with aluminum perrhenate targets for reactor production of high specific activity Re-186. Appl. Radiat. Isot. 1997, 48, 1; https://doi.org/10.1016/s0969-8043(96)00124-8.Suche in Google Scholar
6. Fassbender, M. E., Ballard, B., Birnbaum, E. R., Engle, J. W., John, K. D., Maassen, J. R., Nortier, F. M., Lenz, J. W., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity 186gRe using WO3 targets. Radiochim. Acta 2013, 101, 339; https://doi.org/10.1524/ract.2013.2031.Suche in Google Scholar
7. Lapi, S., Mills, W. J., Wilson, J., McQuarrie, S., Publicover, J., Schueller, M., Schyler, D., Ressler, J. J., Ruth, T. J. Production cross-sections of 181–186Re isotopes from proton bombardment of natural tungsten. Appl. Radiat. Isot. 2007, 65, 345; https://doi.org/10.1016/j.apradiso.2006.08.015.Suche in Google Scholar PubMed
8. Bonardi, M. L., Groppi, F., Manenti, S., Persico, E., Gini, L. Production study of high specific activity NCA Re-186g by proton and deuteron cyclotron irradiation. J. Radioanal. Nucl. Chem. 2010, 286, 1; https://doi.org/10.1007/s10967-009-0380-4.Suche in Google Scholar
9. Alekseev, I. E., Lazarev, V. V. Cyclotron production and radiochemical isolation of the therapeutical radionuclide 186Re. Radiochemistry 2006, 48, 497; https://doi.org/10.1134/s1066362206050171.Suche in Google Scholar
10. Balkin, E. R., Gagnon, K., Strong, K. T., Smith, B. E., Dorman, E. F., Emery, R. C., Pauzauskie, P. J., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Deuteron irradiation of W and WO3 for production of high specific activity 186Re: challenges associated with thick target preparation. Appl. Radiat. Isot. 2016, 115, 197; https://doi.org/10.1016/j.apradiso.2016.06.021.Suche in Google Scholar PubMed
11. Gott, M. D., Hayes, C. R., Wycoff, D. E., Balkin, E. R., Smith, B. E., Pauzauskie, P. J., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Wilbur, D. S., Jurisson, S. S. Accelerator-based production of the 99mTc-186Re diagnostic-therapeutic pair using metal disulfide targets (MoS2, WS2, OsS2). Appl. Radiat. Isot. 2016, 114, 159; https://doi.org/10.1016/j.apradiso.2016.05.024.Suche in Google Scholar PubMed
12. Lei, W., Xiao, J.-L., Liu, H.-P., Jia, Q.-L., Zhang, H.-J. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten 2020, 2, 217; https://doi.org/10.1007/s42864-020-00054-6.Suche in Google Scholar
13. Zhao, G., Wu, Y., Shao, Y., Hao, X. Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale 2016, 8, 5407; https://doi.org/10.1039/c5nr07950k.Suche in Google Scholar PubMed
14. Tan, C., Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713; https://doi.org/10.1039/c4cs00182f.Suche in Google Scholar PubMed
15. Goethals, P.-E., Zimmermann, R. Cyclotrons Used in Nuclear Medicine World Market Report & Directory, 2015; pp 74–185. https://www.researchgate.net/figure/Distinction-of-cyclotron-types-Goethals-and-Zimmermann-2015_tbl2_323297502.Suche in Google Scholar
16. Demoin, D. W., Dame, A. N., Minard, W. D., Gallazzi, F., Seickman, G. L., Rold, T. L., Bernskoetter, N., Fassbender, M. E., Hoffman, T. J., Deakyne, C. A., Jurisson, S. S. Monooxorhenium(V) complexes with 222-N2S2 MAMA ligands for bifunctional chelator agents: syntheses and preliminary in vivo evaluation. Nucl. Med. Biol. 2016, 43, 802; https://doi.org/10.1016/j.nucmedbio.2016.08.017.Suche in Google Scholar PubMed PubMed Central
17. Ziegler, J. F., Ziegler, M. D., Biersack, J. P. SRIM - the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B. 2010, 268, 1818; https://doi.org/10.1016/j.nimb.2010.02.091.Suche in Google Scholar
18. Makris, G., Radford, L. L., Kuchuk, M., Gallazzi, F., Jurisson, S. S., Smith, C. J., Hennkens, H. M. NOTA and NODAGA [99mTc]Tc- and [186Re]Re-tricarbonyl complexes: radiochemistry and first example of a [99mTc]Tc-NODAGA somatostatin receptor-targeting bioconjugate. Bioconjugate Chem. 2018, 29, 4040; https://doi.org/10.1021/acs.bioconjchem.8b00670.Suche in Google Scholar PubMed
19. Tárkányi, F., Hermanne, A., Takács, S., Ditrói, F., Kovalev, F., Ignatyuk, A. V. New measurement and evaluation of the excitation function of the 186W(p, n) nuclear reaction for production of the therapeutic radioisotope 186Re. Nucl. Instrum. Methods Phys. Res. B. 2007, 264, 389.10.1016/j.nimb.2007.09.026Suche in Google Scholar
20. Shigeta, N., Matsuoka, H., Osa, A., Koizumi, M., Izumo, M., Kobayashi, K., Hashimoto, K., Sekine, T., Lambrecht, R. M. Production method of no-carrier-added 186Re. J. Radioanal. Nucl. Chem. 1996, 205, 85; https://doi.org/10.1007/bf02040553.Suche in Google Scholar
21. Qiao, Z., Xu, J., Gonzalez, R., Miao, Y. Novel [99mTc]-Tricarbonyl-NOTA-Conjugated lactam-cyclized alpha-MSH peptide with enhanced melanoma uptake and reduced renal uptake. Mol. Pharm. 2020, 17, 3581; https://doi.org/10.1021/acs.molpharmaceut.0c00606.Suche in Google Scholar PubMed PubMed Central
22. Sharma, P., Kumar, A., Bankuru, S., Chakraborty, J., Puravankara, S. Large-scale surfactant-free synthesis of WS2 nanosheets: an investigation into the detailed reaction chemistry of colloidal precipitation and their application as an anode material for litium-ion and sodium-ion batteries. New J. Chem. 2020, 44, 1594; https://doi.org/10.1039/c9nj04662c.Suche in Google Scholar
23. Gajic, N., Kamberovic, Z., Andic, Z., Trpcevska, J., Plesingerova, B., Korac, M. Synthesis of tribological WS2 powder from WO3 prepared by ultrasonic spray pyrolysis (USP). Metals 2019, 9, 277.10.3390/met9030277Suche in Google Scholar
24. http://www.tungsten-powder.com/tungsten-disulfide-producing-method.html.Suche in Google Scholar
25. Alharbi, A., Shahrjerdi, D. Electronic properties of monolayer tungsten disulfide grown by chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 193502; https://doi.org/10.1063/1.4967188.Suche in Google Scholar
26. Hussain, M., Sudar, S., Aslam, M. N., Malik, A. A., Ahmad, R., Qaim, S. M. Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide 186Re. Radiochim. Acta 2010, 98, 385; https://doi.org/10.1524/ract.2010.1733.Suche in Google Scholar
27. O’Neil, J. P., Wilson, S. R., Katzenellenbogen, J. A. Preparation and structural characterization of monoamine-monoamide bis(thiol) oxo complexes of technetium(V) and rhenium(V). Inorg. Chem. 1994, 33, 319.10.1021/ic00080a022Suche in Google Scholar
28. Madras, B. K., Jones, A. G., Mahmood, A., Zimmerman, R. E., Garada, B., Holman, B. L., Davison, A., Blundell, P., Meltzer, P. C. Technepine: a high-affinity 99mtechnetium probe to label the dopamine transporter in brain by SPECT imaging. Synapse 1996, 22, 239; https://doi.org/10.1002/(sici)1098-2396(199603)22:3<239::aid-syn6>3.0.co;2-d.10.1002/(SICI)1098-2396(199603)22:3<239::AID-SYN6>3.0.CO;2-DSuche in Google Scholar
29. Meegalla, S. K., Plössl, K., Kung, M.-P., Chumpradit, S., Stevenson, D. A., Kushner, S. A., McElgin, W. T., Mozley, P. D., Kung, H. F. Synthesis and characterization of technetium-99m-labeled tropanes as dopamine transporter-imaging agents. J. Med. Chem. 1997, 40, 9; https://doi.org/10.1021/jm960532j.Suche in Google Scholar
30. Meltzer, P. C., Blundell, P., Jones, A. G., Mahmood, A., Garada, B., Zimmerman, R. E., Davison, A., Holman, B. L., Madras, B. K. A technetium-99m SPECT imaging agent which targets the dopamine transporter in primate brain. J. Med. Chem. 1997, 40, 1835; https://doi.org/10.1021/jm960868t.Suche in Google Scholar
31. Schibli, R., Schwarzbach, R., Alberto, R., Ortner, K., Schmalle, H., Dumas, C., Egli, A., Schubiger, P. A. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjugate Chem. 2002, 13, 750; https://doi.org/10.1021/bc015568r.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1138).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Artikel in diesem Heft
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences