Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
-
Lei Li
, Ran Ma , Xuewei Liu , Tao Wen, Bo Wu
, Mingtai Sun , Zheng Jiang , Suhua Wang and Xiangke Wang
Abstract
Inorganic ion-exchange materials show potential application for toxic radioactive ions due to their remarkable high efficiency and selectivity features. Here, two type of carbon-supported titanate (C@TNFs and C@TNFs(H)) nanofibers have been synthesized by a cost-effective in suit growth method. The resulting C@TNFs and C@TNFs(H) microspheres present uniform flower-like morphology and large surface area. The interlayer Na+ in the titanate shell provides docking sites for ion-exchange of radioactive ions (U(VI), Ba(II), and Sr(II)). Interestingly, the exceeding theoretical cation-exchange capacities (CECs) are achieved on C@TNFs for U(VI) ∼4.76 meq g−1 and Ba(II) ∼2.65 meq g−1 and C@TNFs(H) for Ba(II) ∼2.53 meq g−1 and Sr(II) ∼2.24 meq g−1, respectively. The impressive adsorption performance is mainly attributed to the synergistic effects of ion-exchange and surface complexation. More significantly, C@TNFs and C@TNFs(H) maintain high distribution coefficients (K d U) of >104 mL g−1 over a wider pH range (pH = 3.5–9.0) and high adsorption rate with short equilibrium time within 50 min. Competitive ion-exchange investigation shows a selectivity order of U(VI) > Ba(II) > Sr(II) at individual 10 ppm concentration, pH = 6.0 and T = 298 K. The related spectroscopic studies reveal the intercalative mechanism of radionuclides in the deformed titanate structure, as a result of target ions firmly trapped in the interlayer of C@TNFs and C@TNFs(H). These advantageous features allow the C@TNFs and C@TNFs(H) to be promising candidates for the remediation of toxic radioactive ions polluted water.
Funding source: National Key Research and Development Program of China
Award Identifier / Grant number: 2018YFC1900105
Funding source: Science Challenge Project
Award Identifier / Grant number: TZ2016004
Funding source: Beijing Outstanding Young Scientist Program
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the National Key Research and Development Program of China (2018YFC1900105), Science Challenge Project (TZ2016004), and Beijing Outstanding Young Scientist Program.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Feng, M. L., Sarma, D., Qi, X. H. K., Du, Z., Huang, X. Y., Kanatzidis, M. G. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J. Am. Chem. Soc. 2016, 138, 12578; https://doi.org/10.1021/jacs.6b07351.Search in Google Scholar
2. Feng, M. L., Sarma, D., Gao, Y. J., Qi, X. H., Li, W. A., Huang, X. Y., Kanatzidis, M. G. Efficient removal of [UO2]2+, Cs+, and Sr2+ ions by radiation-resistant gallium thioantimonates. J. Am. Chem. Soc. 2018, 140, 11133; https://doi.org/10.1021/jacs.8b07457.Search in Google Scholar
3. Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., Gao, X. P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777; https://doi.org/10.1002/adma.200702055.Search in Google Scholar
4. Li, S. J., Hu, Y. Z., Zhen, Z. W., Cai, Y. W., Ji, Z. Y., Tan, X. L., Liu, Z. X., Zhao, G. X., Hu, S. X., Wang, X. K. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci. China Chem. 2021, 64, 1323–1331; https://doi.org/10.1007/s11426-021-9987-1.Search in Google Scholar
5. Cheng, G., Zhang, A. R., Zhao, Z. W., Chai, Z. M., Hu, B. W., Han, B., Ai, Y. J., Wang, X. K.: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull. 2021; https://doi.org/10.1016/j.scib.2021.05.012.Search in Google Scholar
6. Wang, H. H., Guo, H., Zhang, N., Chen, Z. S., Hu, B. W., Wang, X. K. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and Bisphenol A: ESR, XPS and EXAFS investigation. Environ. Sci. Technol. 2019, 53, 6454; https://doi.org/10.1021/acs.est.8b06913.Search in Google Scholar
7. Lapka, J. L., Paulenova, A., Alyapyshev, M. Y., Babain, V. A., Herbst, R. S., Law, J. D. Extraction of uranium(VI) with diamides of dipicolinic acid from nitric acid solutions. Radiochim. Acta 2009, 97, 291; https://doi.org/10.1524/ract.2009.1588.Search in Google Scholar
8. Schmitt, P., Beer, P. D., Drew, M. G. B., Sheen, P. D. Uranyl binding by a novel bis-calix [4] arene receptor. Tetrahedron Lett. 1998, 39, 6383; https://doi.org/10.1016/s0040-4039(98)01315-x.Search in Google Scholar
9. Liu, X. L., Pang, H. W., Liu, X. W., Li, Q., Zhang, N., Mao, L., Qiu, M. Q., Hu, B. W., Yang, H., Wang, X. K. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2021, 2, 100076; https://doi.org/10.1016/j.xinn.2021.100076.Search in Google Scholar PubMed PubMed Central
10. Ma, J. P., Wang, C., Xi, W. K., Zhao, Q. Y., Wang, S. Y., Qiu, M. Q., Wang, J. J., Wang, X. K. Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: a review. ACS ES&T Eng. 2021, 1, 685; https://doi.org/10.1021/acsestengg.0c00268.Search in Google Scholar
11. Hu, B. W., Ai, Y. J., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., Wang, X. K. Efficient elimination of organic and inorganic pollutants by biochar-based nanomaterials. Biochar 2020, 2, 47; https://doi.org/10.1007/s42773-020-00044-4.Search in Google Scholar
12. Hu, B. W., Wang, H. F., Liu, R. R., Qiu, M. Q. Highly efficient U(VI) capture by amidoxime/carbon nitride composites: evidence of EXAFS and modeling. Chemosphere 2021, 274, 129743; https://doi.org/10.1016/j.chemosphere.2021.129743.Search in Google Scholar
13. Semião, A. J. C., Rossiter, H. M. A., Schäfer, A. I. Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration. J. Membr. Sci. 2010, 348, 174; https://doi.org/10.1016/j.memsci.2009.10.056.Search in Google Scholar
14. Villalobos-Rodriguez, R., Montero-Cabrera, M. E., Esparza-Ponce, H. E., Herrera-Peraza, E. F., Ballinas-Casarrubias, M. L. Uranium removal from water using cellulose triacetate membranes added with activated carbon. Appl. Radiat. Isot. 2012, 70, 872; https://doi.org/10.1016/j.apradiso.2012.01.017.Search in Google Scholar
15. Ling, L., Zhang, W. X. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc. 2015, 137, 2788; https://doi.org/10.1021/ja510488r.Search in Google Scholar
16. Ma, S., Huang, L., Ma, L., Shim, Y., Islam, S. M., Wang, P., Zhao, L. D., Wang, S., Sun, G., Yang, X., Kanatzidis, M. G. Efficient uranium capture by polysulfide/layered double hydroxide composites. J. Am. Chem. Soc. 2015, 137, 3670; https://doi.org/10.1021/jacs.5b00762.Search in Google Scholar
17. Adeleye, S. A., Clay, P. G., Oladipo, M. O. A. Sorption of caesium, strontium and europium ions on clay minerals. J. Mater. Sci. 1994, 29, 954; https://doi.org/10.1007/bf00351416.Search in Google Scholar
18. Misaelidesa, P., Godelitsasa, A., Filippidisb, A., Charistosa, D., Anousisc, I. Thorium and uranium uptake by natural zeolitic materials. Sci. Total Environ. 1995, 173–174, 237; https://doi.org/10.1016/0048-9697(95)04748-4.Search in Google Scholar
19. Li, N., Zhang, L., Chen, Y., Fang, M., Zhang, J., Wang, H. Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Adv. Funct. Mater. 2012, 22, 835; https://doi.org/10.1002/adfm.201102272.Search in Google Scholar
20. Komarneni, S., Roy, R. A cesium-selective ion sieve made by topotactic leaching of phlogopite mica. Science 1988, 239, 1286; https://doi.org/10.1126/science.239.4845.1286.Search in Google Scholar PubMed
21. Al-Attar, L., Dyer, A. Sorption behaviour of uranium on birnessite, a layered manganese oxide. J. Mater. Chem. 2002, 12, 1381–1386; https://doi.org/10.1039/b108612j.Search in Google Scholar
22. Yang, D., Sarina, S., Zhu, H., Liu, H., Zheng, Z., Xie, M., Smith, S. V., Komarneni, S. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Ed. 2011, 50, 10594; https://doi.org/10.1002/anie.201103286.Search in Google Scholar PubMed
23. Xie, F., Zhang, L., Su, D., Jaroniec, M., Qiao, S. Z. Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 2017, 29, 1700989; https://doi.org/10.1002/adma.201700989.Search in Google Scholar PubMed
24. Tan, X., Fang, M., Tan, L., Liu, H., Ye, X., Hayat, T., Wang, X. K. Core-shell hierarchical C@Na2Ti3O7·9H2O nanostructures for the efficient removal of radionuclides. Environ. Sci.: Nano 2018, 5, 1140; https://doi.org/10.1039/c8en00149a.Search in Google Scholar
25. Zou, Y., Wang, X., Ai, Y., Liu, Y., Ji, Y., Wang, H., Hayatf, T., Alsaedif, A., Hu, W., Wang, X. β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J. Mater. Chem. 2016, 4, 14170; https://doi.org/10.1039/c6ta05958a.Search in Google Scholar
26. Komarneni, S., Kozai, N., Paulus, W. J. Superselective clay for radium uptake. Nature 2001, 410, 771; https://doi.org/10.1038/35071173.Search in Google Scholar PubMed
27. Yang, D., Zheng, Z., Yuan, Y., Liu, H., Waclawik, E. R., Ke, X., Xie, M., Zhu, H. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(II) ions from water. Phys. Chem. Chem. Phys. 2010, 12, 1271; https://doi.org/10.1039/b911085b.Search in Google Scholar PubMed
28. Ide, Y., Ochi, N., Ogawa, M. Effective and selective adsorption of Zn2+ from seawater on a layered silicate. Angew. Chem. Int. Ed. 2011, 123, 680; https://doi.org/10.1002/ange.201002322.Search in Google Scholar
29. Huang, S., Pang, H., Li, L., Jiang, S., Wen, T., Zhuang, L., Hu, B., Wang, X. K. Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53. Chem. Eng. J. 2018, 353, 157; https://doi.org/10.1016/j.cej.2018.07.129.Search in Google Scholar
30. Liu, W., Zhao, X., Wang, T., Zhao, D., Ni, J. Adsorption of U(VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter. Chem. Eng. J. 2016, 286, 427; https://doi.org/10.1016/j.cej.2015.10.094.Search in Google Scholar
31. Jurado-Vargas, M., OIguln, M. T., Ordonez-Regil, E., Jimenez-Reyes, M. Ion exchange of radium and barium in zeolites. J. Radioanal. Nucl. Chem. 1997, 218, 153; https://doi.org/10.1007/bf02039327.Search in Google Scholar
32. Zhao, M., Huang, J., Guo, X., Chen, H., Zhao, H., Dong, L., Liu, X.-J. Preparation of Na2Ti3O7/titanium peroxide composites and their adsorption property on cationic dyes. J. Chem. 2015, 2015, 1.10.1155/2015/363405Search in Google Scholar
33. Manos, M. J., Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441; https://doi.org/10.1021/ja308028n.Search in Google Scholar
34. Li, L., Huang, S., Wen, T., Ma, R., Yin, L., Li, J., Chen, Z., Hayat, T., Hu, B., Wang, X. K. Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). J. Colloid Interface Sci. 2019, 543, 225; https://doi.org/10.1016/j.jcis.2019.02.060.Search in Google Scholar
35. Sun, X., Li, Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur J. 2003, 9, 2229; https://doi.org/10.1002/chem.200204394.Search in Google Scholar
36. Yin, L., Wang, P., Wen, T., Yu, S., Wang, X., Hayat, T., Alsaedi, A., Wang, X. K. Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(VI). Environ. Pollut. 2017, 226, 125; https://doi.org/10.1016/j.envpol.2017.03.078.Search in Google Scholar
37. Verhoeven, J. A. T., Doveren, H. van. XPS studies on Ba, BaO and the oxidation of Ba. Appl. Surf. Sci. 1980, 5, 361; https://doi.org/10.1016/0378-5963(80)90101-4.Search in Google Scholar
38. Pilleux, M. E., Grahmann, C. R., Fuenzalida, V. M. Hydrothermal strontium titanate films on titanium: an XPS and AES depth-profiling study. J. Am. Ceram. Soc. 1994, 77, 1601; https://doi.org/10.1111/j.1151-2916.1994.tb09763.x.Search in Google Scholar
39. Kim, S. B., Kim, C. I., Chang, E. G., Yeom, G. Y. Study on surface reaction of (Ba, Sr)TiO3 thin films by high density plasma etching. J. Vac. Sci. Technol., A 1999, 17, 2156; https://doi.org/10.1116/1.581742.Search in Google Scholar
40. Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Han, D. H., Lee, J., Cho, M. H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. 2014, 2, 637; https://doi.org/10.1039/c3ta14052k.Search in Google Scholar
41. Huang, C., Young, N. P., Granta, P. S. Spray processing of TiO2 nanoparticle/ionomer coatings on carbon nanotube scaffolds for solid-state supercapacitors. J. Mater. Chem. 2014, 2, 11022; https://doi.org/10.1039/c4ta02188f.Search in Google Scholar
42. Ylhäinen, E. K., Nunes, M. R., Silvestre, A. J., Monteiro, O. C. Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties. J. Mater. Sci. 2012, 47, 4305; https://doi.org/10.1007/s10853-012-6281-x.Search in Google Scholar
43. Zhang, R., Chen, C., Li, J., Wang, X. K. Investigation of interaction between U(VI) and carbonaceous nanofibers by batch experiments and modeling study. J. Colloid Interface Sci. 2015, 460, 237; https://doi.org/10.1016/j.jcis.2015.08.073.Search in Google Scholar PubMed
44. Dyer, A., Chow, J. K. K., Umar, I. M. The uptake of radioisotopes onto clays and other natural materials: I. Cesium, strontium and ruthenium onto clays. J. Radioanal. Nucl. Chem. 1999, 242, 313; https://doi.org/10.1007/bf02345558.Search in Google Scholar
45. Zhang, S., Liu, Y., Gu, P., Ma, R., Wen, T., Zhao, G., Li, L., Ai, Y., Hu, C., Wang, X. K. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl. Catal. B Environ. 2019, 248, 1; https://doi.org/10.1016/j.apcatb.2019.02.008.Search in Google Scholar
46. Zhang, Y., Zhu, M., Zhang, S., Cai, Y., Lv, Z., Fang, M., Tan, X., Wang, X. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B Environ. 2019, 279, 119390.10.1016/j.apcatb.2020.119390Search in Google Scholar
47. Dai, S. H., Wang, N., Qi, C. J., Wang, X. X., Ma, Y., Yang, L., Liu, X. Y., Huang, Q., Nie, C. M., Hu, B. W., Wang, X. K. Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions. Sci. Total Environ. 2019, 685, 986; https://doi.org/10.1016/j.scitotenv.2019.06.292.Search in Google Scholar PubMed
48. Liu, W., Wang, T., Borthwick, A. G. L., Wang, Y., Yin, X., Li, X., Ni, J. Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: competition and effect of inorganic ions. Sci. Total Environ. 2013, 456–457, 171; https://doi.org/10.1016/j.scitotenv.2013.03.082.Search in Google Scholar PubMed
49. Yang, D., Liu, H., Zheng, Z., Sarina, S., Zhu, H. Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale 2013, 5, 2232; https://doi.org/10.1039/c3nr33622k.Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1055).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences