Startseite Naturwissenschaften Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites

  • Mai M. EL-Zayat EMAIL logo , Maysa A. Mohamed und Nawal A. Shaltout
Veröffentlicht/Copyright: 18. Juni 2019

Abstract

Biocomposites of waste polypropylene (wPP) with 20 phr (part per 100 parts of [wPP]) corn husk fibers (CHF) as bio-filler were prepared for environmental aspect. Maleic anhydride (MAH) was used, with 5, 10 phr concentration as compatabilizer was carried out. The obtained biocomposites were irradiated by γ radiation ranging from 5 to 25 kGy. Mechanical, physical and thermal properties of the biocomposites were studied to evaluate the effect of CHF addition on the properties of obtained composites. It has been found that there is deterioration in all properties. However, by the addition of MAH, the former properties were improved. The obtained results were confirmed by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM).

References

1. Sarker, M., Rashid, M. M., Molla, M., Rahman, M.: High density polyethylene (HDPE-2) and polyethylene (PS-6) waste Plastic mixture turn into valuable fuel energy. J. Inter. Sci. Publ. Mater. Meth. Tech. 5, 1313 (2011).Suche in Google Scholar

2. Carrasco-Guigón, F., Rodríguez-Félix, D., Castillo-Ortega, M., Santacruz-Ortega, H., Burruel-Ibarra, S., Encinas-Encinas, J., Madera-Santana, T.: Preparation and characterization of extruded composites based on polypropylene and chitosan compatibilized with polypropylene-graft-maleic anhydride. Materials 10, 105 (2017).10.3390/ma10020105Suche in Google Scholar

3. Leblanc, J. L., Furtado, C. R. G., Leite, M. C. A. M., Visconte, L. L. Y.: Investigating polypropylene-green coconut fiber composites in the molten and solid states through various techniques. J. Appl. Polym. Sci. 102, 1922 (2006).10.1002/app.24239Suche in Google Scholar

4. Yi, W. W., Fei, Z. X., Guan, W. G., Feng, C. J.: Preparation and properties of polypropylene filled with organo-montmo-rillonite nanocomposites. J. Appl. Polym. Sci. 100, 2875 (2006).10.1002/app.23396Suche in Google Scholar

5. Genevive, C., OgbennayaIgwe, I.: The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene. Mater. Sci. Appl. 2, 811 (2011).Suche in Google Scholar

6. Jagadeesh, D., Sudhakara, P., Lee, D. W., Kim, H. S., Kim, H. S.: Mechanical properties of corn husk flour/PP bio-composites. Comp. Reaser. 26, 213 (2013).10.7234/composres.2013.26.4.213Suche in Google Scholar

7. Belgacem, M. N., Gandini, A.: Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam, the Netherlands (2008). ISBN 978-0-08-045316–3.Suche in Google Scholar

8. Bledzki, A. K., Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221 (1999).10.1016/S0079-6700(98)00018-5Suche in Google Scholar

9. Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter, Berlin, Germany (2012). ISBN 978–3110254563.10.1515/9783110254600Suche in Google Scholar

10. Darie, R. N., Bercea, M., Kozlowski, M., Spirindon, I.: Evaluation of properties of LDPE/OAK wood composites exposed to artificial ageing. Cellul. Chem. Technol. 45, 127 (2011).Suche in Google Scholar

11. Le Duigou, A., Deux, J. M., Davies, P., Baley, C.: PLLA/Flax Mat/Balsa/Bio-Sandwish manufacture and mechanical properties. Appl. Compos. Mater. 18, 421 (2011).10.1007/s10443-010-9173-8Suche in Google Scholar

12. Mohanty, A. K., Misra, M., Hinrichsen, G.: Biofibres, biodegradable polymers and biocomposites. Macromol. Mater. Eng. 24, 276 (2000).10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-WSuche in Google Scholar

13. Saheb, N. D., Jog, J. P.: Natural fiber polymer composites. Adv. Polym. Technol. 18, 351 (2009).10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-XSuche in Google Scholar

14. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Verpoest, I.: Influence of processing and chemical treatment of flax fibers on their composites. Comp. Sci. Technol. 63, 1241 (2003).10.1016/S0266-3538(03)00093-9Suche in Google Scholar

15. Galamboš, M., Daňo, M., Rosskopfová, O., Šeršeň, F., Kufčáková, J., Adamcová, R., Rajec, P.: Effect of gamma-irradiation on adsorption properties of Slovak bentonites. J. Radioanal. Nucl. Chem. 292, 481 (2012).10.1007/s10967-012-1638-9Suche in Google Scholar

16. Krajňák, A., Viglašová, E., Galamboš, G., Krivosudský, L.: Kinetics, thermodynamics and isotherm parameters of uranium(VI) adsorption on natural and HDTMA-intercalated bentonite and zeolite. Desalin. Water Treat. 127, 272 (2018).10.5004/dwt.2018.22762Suche in Google Scholar

17. Viglašová, E., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., Soja, G., Rompel, A., Matík, M., Briančin, J.: Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manage. 79, 385 (2018).10.1016/j.wasman.2018.08.005Suche in Google Scholar

18. Albano, C., Reyes, J., Gonzáles, J, Ichazo, M., Poleo, R., Davidson, E.: Mathematical analysis of the mechanical behavior of 60Co-irradiated polyolefin blends with and without wood flour. Polym. Degrad. Stab. 73, 39 (2001).10.1016/S0141-3910(01)00065-9Suche in Google Scholar

19. Chapiro, A.: Radiation chemistry of polymeric system, high polymers (1962), Vol. 15, Interscience Publishers, New York, p. 379.Suche in Google Scholar

20. Singh, A., Silverman, J.: Radiation processing of polymers (1992), Silverman, Hanser, Munich, p. 14.Suche in Google Scholar

21. Czvikovszky,T.: Electron-beam processing of wood fiber reinforced polypropylene. Rad. Phys. Chem. 47, 425 (1996).10.1016/0969-806X(95)00131-GSuche in Google Scholar

22. Paul Guin, J., Bhardwaj, Y. K., Varshney, L.: Radiation grafting: a voyage from bio-waste corn husk to an efficient thermostable adsorbent. Carbohydr. Polym. 183, 151 (2018).10.1016/j.carbpol.2017.11.101Suche in Google Scholar PubMed

23. Malekie, S., Ziaie, F., Esmaeli, A.: Study on dosimetry characteristics of polymer-CNT nanocomposites: effect of polymer matrix. Nucl. Instrum. Methods Phys. Res. A 816, 101 (2016).10.1016/j.nima.2016.01.077Suche in Google Scholar

24. Malekie, S., Salehpour, B.: Evaluation of gamma radiation response of electrolyte, MKP and MKT capacitors in various frequencies. Radiochim. Acta 105, 577 (2017).10.1515/ract-2016-2692Suche in Google Scholar

Received: 2019-02-18
Accepted: 2019-05-15
Published Online: 2019-06-18
Published in Print: 2020-01-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3121/pdf
Button zum nach oben scrollen