Abstract
Because of high mobility, the immobilization of long-lived fission product 79Se (often existed as 79Se(IV) and 79Se(VI) anions) is a critical consideration in the repository of high-level radioactive waste. In this work, a Fe-OOH modified bentonite (Fe-OOH-bent) was synthesized as a potential filling material in the repository site for effective adsorption and present the migration of different species of 79Se. The adsorbent was characterized using FT-IR, XRD, XFS, zeta potential and BET to clarify its physical properties, compositions and structures. A good thermal and radiation stabilities of Fe-OOH-bent was confirmed by its stable uptake ratio for Se(IV) and Se(VI) compared to original samples. The batch experimental results show that Se(IV) and Se(VI) can be efficiently removed from aqueous by Fe-OOH-bent within 60 min with maximum adsorption capacities of 68.45 mg/g for Se(IV) and 40.47 mg/g for Se(VI) in the optimal conditions, indicating its high potential application in consideration of its simple synthesis process, low cost and high adsorption capacity in view of immobilization of 79Se. The surface species and variation of oxide state of Fe as well as Se(IV) and Se(VI) onto Fe-OOH-bent were investigated by XPS analysis. The values of relative area of Se(IV)–O and Se(VI)–O in XPS spectra followed the same tendency as their adsorption ratio with the variation of system pH, suggesting that the formation of complexes between selenium species and Fe-OOH-bent surface.
Funding source: Science Challenging Program
Award Identifier / Grant number: TZ2016004
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21771093
Funding statement: The financial support from Science Challenging Program (No. TZ2016004), National Natural Science Foundation of China (No. 21771093) and Fundamental Research Funds for the Central Universities of China (lzujbky-2017-it38) are gratefully appreciated.
References
1. International Atomic Energy Agency: Nuclear power reactors in the World. Fuel Energy Abstracts 36, 340 (2011).10.1016/0140-6701(95)96544-MSearch in Google Scholar
2. Gao, X., Bi, M., Shi, K., Wu, W., Chai, Z.: Sorption characteristic of uranium (VI) ion onto K-feldspar. Appl. Radiat. Isot. 128, 311 (2017).10.1016/j.apradiso.2017.07.041Search in Google Scholar PubMed
3. Ahn, J., Apted, M. J.: Preface. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste. Woodhead Publishing (2010), p. xxiii.10.1016/B978-1-84569-542-2.50028-4Search in Google Scholar
4. Lee, J. O., Birch, K., Choi, H. J.: Coupled thermal-hydro analysis of unsaturated buffer and backfill in a high-level waste repository. Ann. Nucl. Energy 72, 63 (2014), p. xxiii.10.1016/j.anucene.2014.04.027Search in Google Scholar
5. Ojovan, M. I.: Handbook of Advanced Radioactive Waste Conditioning Technologies (2011).10.1533/9780857090959Search in Google Scholar
6. Fan, Q., Li, P., Zheng, Z., Wu, W., Liu, C.: Insights into sorption species of Eu(III) on γ-Al2O3, and bentonite under different pH: studies at macro- and micro-scales. J. Radioanal. Nucl. Chem. 299, 1767 (2014).10.1007/s10967-013-2819-xSearch in Google Scholar
7. Guo, Z., Xu, J., Shi, K., Tang, Y., Wu, W., Tao, Z.: Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies. Colloids. Surf. A 339, 133 (2009).10.1016/j.colsurfa.2009.02.007Search in Google Scholar
8. Shi, K., Ye, Y., Guo, N., Guo, Z., Wu, W.: Evaluation of Se(IV) removal from aqueous solution by GMZ Na-bentonite: batch experiment and modeling studies. J. Radioanal. Nucl. Chem. 299, 583 (2014).10.1007/s10967-013-2807-1Search in Google Scholar
9. Herbel, M. J., Johnson, T. M., Tanji, K. K., Gao, S.: Selenium stable isotope ratios in California agricultural drainage water management systems. J. Environ. Qual. 31, 1146 (2002).10.2134/jeq2002.1146Search in Google Scholar PubMed
10. Geet, M. V., Craen, M. D., Mallants, D., Wemaere, I.: How to treat climate evolution in the assessment of the long-term safety of disposal facilities for radioactive waste: examples from Belgium. Clim. Past Discuss. 5, 463 (2009).10.5194/cpd-5-463-2009Search in Google Scholar
11. Li, Y., Bi, M., Wang, Z., Li, R., Shi, K., Wu, W.: Organic modification of bentonite and its application for perrhenate (an analogue of pertechnetate) removal from aqueous solution. J. Taiwan. Inst. Chem. Eng. 62, 104 (2016).10.1016/j.jtice.2016.01.018Search in Google Scholar
12. Zhao, D., Chen, S., Yang, S., Yang, X., Yang, S.: Investigation of the sorption behavior of Cd(II) on GMZ bentonite as affected by solution chemistry. Chem. Eng. J. 166, 1010 (2011).10.1016/j.cej.2010.11.092Search in Google Scholar
13. Pan, D., Fan, Q., Li, P., Liu, S., Wu, W.: Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem. Eng. J. 172, 898 (2011).10.1016/j.cej.2011.06.080Search in Google Scholar
14. Song, X. P., Wang, Y. J., Cai, J. J.: Sorption of Th(IV) from aqueous solution to GMZ bentonite: effect of pH, ionic strength, fulvic acid and electrolyte ions. J. Radioanal. Nucl. Chem. 295, 991 (2013).10.1007/s10967-012-1991-8Search in Google Scholar
15. Murali, M. S., Mathur, J. N.: Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J. Radioanal. Nucl. Chem. 254, 129 (2002).10.1023/A:1020858001845Search in Google Scholar
16. Tsai, S. C., Ouyang, S., Hsu, C. N.: Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite. Appl. Radiat. Isot. 54, 209 (2001).10.1016/S0969-8043(00)00292-XSearch in Google Scholar PubMed
17. Donat, R., Akdogan, A., Erdem, E., Cetisli, H.: Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J. Colloid. Interface. Sci. 286, 43 (2005).10.1016/j.jcis.2005.01.045Search in Google Scholar PubMed
18. Montavon, G., Guo, Z., Lützenkirchen, J., Alhajji, E., Kedziorek, M. A. M., Bourg A. C. M.: Interaction of selenite with MX-80 bentonite: effect of minor phases, pH, selenite loading, solution composition and compaction. Colloids Surf. A. 332, 71 (2009).10.1016/j.colsurfa.2008.09.014Search in Google Scholar
19. Bors, J., Dultz, S., Riebe, B.: Organophilic bentonites as adsorbents for radionuclides I. Sorption of ionic fission products. Appl. Clay. Sci. 16, 1 (2000).10.1016/S0169-1317(99)00041-1Search in Google Scholar
20. Bors, J., Dultz, S., Riebe, B.: Retention of radionuclides by organophilic bentonite. Eng. Geol. 54, 195 (1999).10.1016/S0013-7952(99)00074-5Search in Google Scholar
21. Xi, Y., Frost, R. L., He, H., Kloprogge, T., Bostrom, T.: Modification of Wyoming montmorillonite surfaces using a cationic surfactant. Langmuir 21, 8675 (2005).10.1021/la051454iSearch in Google Scholar PubMed
22. Li, Z., Yao, M., Lin, J., Yang, B., Zhang, X., Lei, L.: Pentachlorophenol sorption in the cetyltrimethylammonium bromide/bentonite one-step process in single and multiple solute systems. J. Chem. Eng. Data. 58, 2610 (2013).10.1021/je400505jSearch in Google Scholar
23. Ding, S., Sun, Q., Chen, X., Liu, Q., Wang, D., Lin, J., Zhang, C., Tsang, D. C. W.: Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock®): new insight into sediment phosphorus immobilization. Water Res. 134, 32 (2018).10.1016/j.watres.2018.01.055Search in Google Scholar PubMed
24. Zhu, L., Ren, X., Yu, S.: Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water. Environ. Sci. Technol. 32, 3374 (1998).10.1021/es980353mSearch in Google Scholar
25. Orucoglu, E., Haciyakupoglu, S.: Bentonite modification with hexadecyl-pyridinium and aluminum polyoxy cations and its effectiveness in Se(IV) removal. J. Ind. Eng. Chem. 160, 30 (2015).10.1016/j.jenvman.2015.06.005Search in Google Scholar
26. Choung, S., Kim, M., Yang, J. S., Kim, M. G., Um, W. Y.: Effects of radiation and temperature on iodine sorption by surfactant-modified bentonite. Environ. Sci. Technol. 48, 9684 (2014).10.1021/es501661zSearch in Google Scholar PubMed
27. Li, Y., Cheng, W., Sheng, G., Li, J., Dong, H., Chen, Y., Zhu, L.: Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron. Appl. Catal. B. 174, 329 (2015).10.1016/j.apcatb.2015.03.025Search in Google Scholar
28. Haciyakupoglu, S., Orucoglu, E.: 75Se radioisotope adsorption using Turkey’s Reşadiye modified bentonites. Appl. Clay. Sci. 86, 190 (2013).10.1016/j.clay.2013.10.010Search in Google Scholar
29. Rovira, M., Javier, G., María, M.: Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J. Hazard. Mater. 150, 279 (2008).10.1016/j.jhazmat.2007.04.098Search in Google Scholar PubMed
30. Martínez, M., Giménez, J., Pablo, J. D., Rovira, M., Duro, L.: Sorption of selenium(IV) and selenium(VI) onto magnetite. Appl. Clay. Sci. 252, 3767 (2006).10.1016/j.apsusc.2005.05.067Search in Google Scholar
31. Gonzalez, C. M., Hernandez, J., Peralta-Videa, J. R.: Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial. J. Hazard. Mater. 211, 138 (2012).10.1016/j.jhazmat.2011.08.023Search in Google Scholar PubMed PubMed Central
32. Wang, H., Wu, T., Chen, J., Zheng, Q., He, C., Zhao, Y.: Sorption of Se(IV) on Fe- and Al-modified bentonite. J. Radioanal. Nucl. Chem. 303, 107 (2015).10.1007/s10967-014-3422-5Search in Google Scholar
33. Koriche, Y., Darder, M., Aranda, P., Semsari, S., Ruiz-Hitzky, E.: Bionano-composites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal. Dalton. Trans. 43, 10512 (2014).10.1039/C4DT00330FSearch in Google Scholar PubMed
34. Chen, D., Chen, J., Luan, X., Ji, H., Xia, Z.: Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem. Eng. J. 171, 1150 (2011).10.1016/j.cej.2011.05.013Search in Google Scholar
35. Towe, K. M., Bradley, W. F.: Mineralogical constitution of colloidal “hydrous ferric oxides”. J. Colloid. Interface. Sci. 24, 384 (1967).10.1016/0021-9797(67)90266-4Search in Google Scholar
36. Tang, H. X., Stumm, W.: The coagulating behaviors of Fe(III) polymeric species – II. Preformed polymers in various concentrations. Water Res. 21, 123 (1987).10.1016/0043-1354(87)90107-2Search in Google Scholar
37. Zhu, R., Wang, T., Ge, F., Chen, W., You, Z.: Intercalation of both CTMAB and Al+3 into montmorillonite. J. Colloid. Interface. Sci. 335, 77 (2009).10.1016/j.jcis.2009.03.033Search in Google Scholar PubMed
38. Dultz, S., Riebe, B., Bunnenberg, C.: Temperature effects on iodine adsorption on organo-clay minerals: II. Structural effects. Appl. Clay. Sci. 28, 17 (2005).10.1016/j.clay.2004.01.005Search in Google Scholar
39. Lee, S. Y., Cho, W. J., Hahn, P. S., Lee, M., Lee, Y. B., Kang, J. K.: Microstructural changes of reference montmorillonites by cationic surfactants. Appl. Clay. Sci. 30, 174 (2005).10.1016/j.clay.2005.03.009Search in Google Scholar
40. Naseri, M. G., Halimah, M. K., Dehzangi, A., Kamalianfar, A., Saion, E. B., Majlis, B. Y.: A comprehensive overview on the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment method. J. Phys. Chem. Solids 75, 315 (2014).10.1016/j.jpcs.2013.11.004Search in Google Scholar
41. Missana, T., Alonso, U., Garcíagutiérrez, M.: Experimental study and modelling of selenite sorption onto illite and smectite clays. J. Colloid. Interface. Sci. 334, 132 (2009).10.1016/j.jcis.2009.02.059Search in Google Scholar PubMed
42. Hou, Z., Shi, K., Wang, X., Ye, Y., Guo, Z., Wu, W.: Investigation of Se(IV) sorption on Na-kaolinite: batch experiments and modeling. J. Radioanal. Nucl. Chem. 303, 25 (2015).10.1007/s10967-014-3317-5Search in Google Scholar
43. Delgado, A. V., Gonzálezcaballero, F., Hunter, R. J., Koopal, L. K., Lyklema, J.: Measurement and interpretation of electrokinetic phenomena. J. Colloid. Interface. Sci. 77, 1753 (2005).10.1201/b10501-69Search in Google Scholar
44. Allard, T., Calas, G.: Radiation effects on clay mineral properties. Appl. Clay. Sci. 43, 143 (2009).10.1016/j.clay.2008.07.032Search in Google Scholar
45. Zuo, Q., Gao, X., Yang, J., Zhang, P., Chen, G., Li, Y., Shi, K., Wu, W.: Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution. J. Taiwan. Inst. Chem. Eng. 80, 754 (2017)10.1016/j.jtice.2017.09.016Search in Google Scholar
46. Sun, W., Pan, W., Wang, F., Xu, N.: Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution. Chem. Eng. J. 273, 353 (2015).10.1016/j.cej.2015.03.061Search in Google Scholar
47. Peak, D., Sparks, D. L.: Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ. Sci. Technol. 36, 1460 (2002).10.1021/es0156643Search in Google Scholar PubMed
48. Hu, J., Lo, I. M. C., Chen, G. J.: Performance and mechanism of chromate (VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles. Sep. Purif. Technol. 58, 76 (2007).10.1016/j.seppur.2007.07.023Search in Google Scholar
49. NIST Database. Available at: https://srdata.nist.gov/xps/selEnergyType.aspx.Search in Google Scholar
50. He, J., Ma, B., Kang, M., Wang, C., Nie, Z., Liu, C.: Migration of (75)Se(IV) in crushed Beishan granite: effects of the iron content. J. Hazard. Mater. 324, 564 (2016).10.1016/j.jhazmat.2016.11.027Search in Google Scholar PubMed
51. Börsig, N., Scheinost, A. C., Shaw, S., Schild, D., Neumann, T.: Uptake mechanisms of selenium oxyanions during the ferrihydrite-hematite recrystallization. Geochim. Cosmochim. Acta. 206, 236 (2017).10.1016/j.gca.2017.03.004Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2019-3151).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment
- Determination of 210Po in low-level wild bilberries reference material for quality control assurance in environmental analysis using extraction chromatography and α-particle spectroscopy
- Chemical effects of nuclear transformations and possible formation of unknown derivatives with N-phenylquinazolinium structure
- An approach for the efficient immobilization of 79Se using Fe-OOH modified GMZ bentonite
- Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4−˙ free radicals in slightly acidic simulated atmospheric water
- Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides
- Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites
- Precise volume fraction measurement for three-phase flow meter using 137Cs gamma source and one detector
Articles in the same Issue
- Frontmatter
- Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment
- Determination of 210Po in low-level wild bilberries reference material for quality control assurance in environmental analysis using extraction chromatography and α-particle spectroscopy
- Chemical effects of nuclear transformations and possible formation of unknown derivatives with N-phenylquinazolinium structure
- An approach for the efficient immobilization of 79Se using Fe-OOH modified GMZ bentonite
- Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4−˙ free radicals in slightly acidic simulated atmospheric water
- Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides
- Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites
- Precise volume fraction measurement for three-phase flow meter using 137Cs gamma source and one detector