Home Physical Sciences Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4−˙ free radicals in slightly acidic simulated atmospheric water
Article
Licensed
Unlicensed Requires Authentication

Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4˙ free radicals in slightly acidic simulated atmospheric water

  • Fathi Djouider EMAIL logo
Published/Copyright: July 25, 2019

Abstract

In a previous work, we showed that the oxidation of Cr(III) to Cr(VI) by OH˙ present in the atmospheric water droplets has the potential to threaten the people’s health since non-toxic species is transformed into environmental carcinogens. The same oxidation might be initiated by the SO4˙ free radicals. Here, we shed some light on the detailed mechanisms of this oxidation reaction occurring in ambient atmosphere. Steady state irradiation and pulse radiolysis technique were used to generate SO4˙. The advanced oxidation process mechanism was investigated at pH 4 and 6 selected as typical values of cloud water acidity. Our findings showed that the oxidation is pseudo-first order with respect to Cr(III) and is pH dependent. In the suggested reaction mechanism, the electron transfer proceeds via an inner sphere mechanism, with formation of the [Cr(III)–SO4˙] precursor adduct, followed by an electron transfer inside the adduct, from Cr(III) to SO4˙, to form Cr(IV): Cr(III)+SO4·[Cr(III)SO4·]Cr(IV)+SO42. At pH 4, the equilibrium constant and the rate constant are 7.52 × 104 M−1 and 2.47 × 104 s−1, respectively. At pH 6 these values become 1.90 × 105 M−1 and 1.41 × 104 s−1, respectively.

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (135-68-D1435, Funder Id: http://dx.doi.org/10.13039/501100004054). The author, therefore, gratefully acknowledges with thanks the DSR technical and financial support.

References

1. Buxton, G. V., Salmon, G. A.: On the chemistry of inorganic free radicals in cloud water. Prog. React. Kinet. Mec. 28, 257 (2003).10.3184/007967403103165512Search in Google Scholar

2. Ouyang, B., Fang, H. J., Zhu, C. Z., Dong, W. B., Hou, H. Q.: Reactions between the SO4˙ radical and some common anions in atmospheric aqueous droplets. J. Environ. Sci. (China) 17, 786 (2005).Search in Google Scholar PubMed

3. Neta, P., Huie, R. E., Ross, A. B.: Rate constants for reactions of inorganic radicals in aqueous solutions. J. Phys. Chem. Ref. Data 17, 1027 (1988).10.1063/1.555808Search in Google Scholar

4. Deng, Y., Ezyske, C. M.: Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 45, 6189 (2011).10.1016/j.watres.2011.09.015Search in Google Scholar PubMed

5. Criquet, J., Leitner, N. K. V.: Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77, 194 (2009).10.1016/j.chemosphere.2009.07.040Search in Google Scholar PubMed

6. Waldemer, R. H., Tratnyek, P. G., Johnson, R. L., Nurmi, J. T.: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ. Sci. Technol. 41, 1010 (2007).10.1021/es062237mSearch in Google Scholar PubMed

7. Liang, C., Chen, Y. J., Chang, K. J.: Evaluation of persulfate oxidative wet scrubber for removing BTEX gases. J. Hazard. Mater. 164, 571 (2009).10.1016/j.jhazmat.2008.08.056Search in Google Scholar PubMed

8. Guo, Y., Lou, X., Fang, C., Xiao, D., Wang, Z., Liu, J.: Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants. Environ. Sci. Technol. 47, 11174 (2013).10.1021/es403199pSearch in Google Scholar PubMed

9. Herrmann, H.: On the photolysis of simple anions and neutral molecules as sources of O˙/OH˙, SOx˙ and Cl˙ in aqueous solution. Phys. Chem. Chem. Phys. 9, 3935 (2007).10.1039/B618565GSearch in Google Scholar

10. Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W., Shan, L.: A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J. Environ. Sci. 21, 1175 (2009).10.1016/S1001-0742(08)62399-2Search in Google Scholar

11. Ziajka, J., Pasiuk-Bronikowska, W.: Rate constants for atmospheric trace organics scavenging SO4˙ in the Fe-catalyzed autoxidation of S(IV). Atmos. Environ. 39, 1431 (2005).10.1016/j.atmosenv.2004.11.024Search in Google Scholar

12. McElroy, W. J., Waygood, S. J.: Kinetics of the reactions of the SO4˙ radical with SO4˙, S2O82−, H2O and Fe2+. J. Chem. Soc., Faraday Trans. 86, 2557 (1990).10.1039/ft9908602557Search in Google Scholar

13. Buxton, G. V., Malone, T. N., Salmon, G. A.: Reaction of SO4˙ with Fe2+, Mn2+ and Cu2+ in aqueous solution. J. Chem. Soc., Faraday Trans. 93, 2893 (1997).10.1039/a701472dSearch in Google Scholar

14. Volland, S., Lütz, C., Michalke, B., Lütz-Meindl, U.: Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat. Toxicol. 109, 59 (2012).10.1016/j.aquatox.2011.11.013Search in Google Scholar PubMed

15. Abdollahi, M., Farshchi, A., Nifkar, S., Seyedifar, M.: Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trials. J. Pharm. Pharm. Sci. 16, 99 (2013).10.18433/J3G022Search in Google Scholar PubMed

16. Katafias, A., Chatłas, J., Impert, O., Kita, P., Madej, E., Topolski, A., Wrzeszcz, G., Eriksen, J., Mønsted, O., Mills, A.: Reactivity difference between protolytic forms of some macrocyclic chromium (III) complexes in ligand substitution and electron transfer processes. Inorg. Chim. Acta 363, 2346 (2010).10.1016/j.ica.2009.07.019Search in Google Scholar

17. Kavouras, P., Pantazopoulou, E., Varitis, S., Vourlias, G., Chrissafis, K., Dimitrakopulos, G. P., Mitrakas, M., Zouboulis, A. I., Karakostas, Th., Xenidis, A.: Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation. J. Hazard. Mater. 283, 672 (2015).10.1016/j.jhazmat.2014.09.066Search in Google Scholar PubMed

18. Apte, A. D., Tare, V., Bose, P.: Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J. Hazard. Mater. 128, 164 (2006).10.1016/j.jhazmat.2005.07.057Search in Google Scholar PubMed

19. Zhang, H.: Light and Iron (III)-induced oxidation of chromium (III) in the presence of organic acids and manganese (II) in simulated atmospheric water. Atmos. Environ. 43, 1633 (2000).10.1016/S1352-2310(99)00384-2Search in Google Scholar

20. Djouider, F., Hussain, A.: A laboratory study of the oxidation of nontoxic Cr(III) to toxic Cr(VI) by OH˙ free radicals in simulated atmospheric water droplets conditions: Potential environmental impact. J. Hazard. Mater. 276, 19 (2014).10.1016/j.jhazmat.2014.05.004Search in Google Scholar PubMed

21. Calvo, A. I., Olmo, F. J., Lyamani, H., Alados-Arboledas, L., Castro, A., Fernández-Raga, M., Fraile, R.: Chemical composition of wet precipitation at the background EMEP station in Víznar Granada, Spain (2002–2006). Atmos. Res. 96, 408 (2010).10.1016/j.atmosres.2010.01.013Search in Google Scholar

22. Klassen, N. V., Shortt, K. R., Seuntjens, J., Ross, C. K.: Fricke dosimetry: the difference between G(Fe3+) for 60Co gamma-rays and high-energy X-rays. Phys. Med. Biol. 44, 1609 (1999).10.1088/0031-9155/44/7/303Search in Google Scholar

23. Buxton, G. V., Djouider, F.: Use of the dichromate solution as a dosimeter for high dose and high dose rate. Radiat. Phys. Chem. 48, 799 (1996).10.1016/S0969-806X(96)00053-9Search in Google Scholar

24. Gonzalez, J. C., Garcia, S., Bellu, S., Salas-Peregrin, J. M., Atria, A. M., Sala, L. F., Signorella, S.: Redox and complexation chemistry of the Cr(VI)/Cr(V)/Cr(IV)-D-glucuronic acid system. J. Chem. Soc., Dalton Trans. 39, 2204 (2010).10.1039/b915652fSearch in Google Scholar

25. Taccetti, N., Giuntini, L., Casini, G., Stefanini, A. A., Chiari, M., Fedi, M. E., Mando, P. A.: The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: overview and examples of applications. Nucl. Instrum. Meth. B 188, 255 (2002).10.1016/S0168-583X(01)01109-0Search in Google Scholar

26. Buxton, G. V., Stuart, C. R.: Re-evaluation of the thiocyanate dosimeter for pulse radiolysis. J. Chem. Soc. Faraday Trans. 91, 279 (1995).10.1039/ft9959100279Search in Google Scholar

27. Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, W. P.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH˙/O˙) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513 (1988).10.1063/1.555805Search in Google Scholar

28. Neta, P., Madhavan, V., Zemel, H., Fessenden R. W.: Rate constants and mechanism of reaction of SO4˙ with aromatic compounds. J. Am. Chem. Soc. 99, 163 (1977).10.1021/ja00443a030Search in Google Scholar

29. Curtis, A. R., Sweetenham, W. P.: FACSIMILE/CHEKMAT user’s manual, AERE report, AERE R 12805. Harwell Laboratory, Oxfordshire, UK (1987).Search in Google Scholar

30. Abdel-Khalek, A. A., Ewais, H. A., Al-Otaibi, F. D.: Inner-sphere oxidation of a ternary complex involving iminodiacetato-chromium(III) and DL-Aspartic acid by periodate. Inorg. React. Mech. 6, 31 (2006).10.1515/IRM.2006.6.1.31Search in Google Scholar

31. Helm, L., Merbach, A. E.: Inorganic and bioinorganic solvent exchange mechanisms. Chem. Rev. 105, 1923 (2005).10.1021/cr030726oSearch in Google Scholar PubMed

32. Ewais, H. A., Ismael, M. K., Abdel-Khalek, A. A.: Kinetics and mechanism of the formation and oxidation of iminodiacetato-chromium(III) complex. J. Saudi Chem. Soc. 13, 219 (2009).10.1016/j.jscs.2009.05.001Search in Google Scholar

33. Xu, G., Yu, F.: Franck-Condon simulation of the anion photoelectron spectroscopy of CrO2 by coherent state method. J Electron. Spectrosc. 205, 10 (2015).10.1016/j.elspec.2015.08.006Search in Google Scholar

34. Buxton, G. V., Djouider, F.: Disproportionation of CrV generated by the radiation-induced reduction of CrVI in aqueous solution containing formate: a pulse radiolysis study. J. Chem. Soc. Faraday Trans. 92, 4173 (1996).10.1039/ft9969204173Search in Google Scholar

Received: 2019-03-05
Accepted: 2019-05-30
Published Online: 2019-07-25
Published in Print: 2020-01-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3134/html
Scroll to top button