Abstract
Biocomposites of waste polypropylene (wPP) with 20 phr (part per 100 parts of [wPP]) corn husk fibers (CHF) as bio-filler were prepared for environmental aspect. Maleic anhydride (MAH) was used, with 5, 10 phr concentration as compatabilizer was carried out. The obtained biocomposites were irradiated by γ radiation ranging from 5 to 25 kGy. Mechanical, physical and thermal properties of the biocomposites were studied to evaluate the effect of CHF addition on the properties of obtained composites. It has been found that there is deterioration in all properties. However, by the addition of MAH, the former properties were improved. The obtained results were confirmed by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM).
References
1. Sarker, M., Rashid, M. M., Molla, M., Rahman, M.: High density polyethylene (HDPE-2) and polyethylene (PS-6) waste Plastic mixture turn into valuable fuel energy. J. Inter. Sci. Publ. Mater. Meth. Tech. 5, 1313 (2011).Search in Google Scholar
2. Carrasco-Guigón, F., Rodríguez-Félix, D., Castillo-Ortega, M., Santacruz-Ortega, H., Burruel-Ibarra, S., Encinas-Encinas, J., Madera-Santana, T.: Preparation and characterization of extruded composites based on polypropylene and chitosan compatibilized with polypropylene-graft-maleic anhydride. Materials 10, 105 (2017).10.3390/ma10020105Search in Google Scholar
3. Leblanc, J. L., Furtado, C. R. G., Leite, M. C. A. M., Visconte, L. L. Y.: Investigating polypropylene-green coconut fiber composites in the molten and solid states through various techniques. J. Appl. Polym. Sci. 102, 1922 (2006).10.1002/app.24239Search in Google Scholar
4. Yi, W. W., Fei, Z. X., Guan, W. G., Feng, C. J.: Preparation and properties of polypropylene filled with organo-montmo-rillonite nanocomposites. J. Appl. Polym. Sci. 100, 2875 (2006).10.1002/app.23396Search in Google Scholar
5. Genevive, C., OgbennayaIgwe, I.: The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene. Mater. Sci. Appl. 2, 811 (2011).Search in Google Scholar
6. Jagadeesh, D., Sudhakara, P., Lee, D. W., Kim, H. S., Kim, H. S.: Mechanical properties of corn husk flour/PP bio-composites. Comp. Reaser. 26, 213 (2013).10.7234/composres.2013.26.4.213Search in Google Scholar
7. Belgacem, M. N., Gandini, A.: Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam, the Netherlands (2008). ISBN 978-0-08-045316–3.Search in Google Scholar
8. Bledzki, A. K., Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221 (1999).10.1016/S0079-6700(98)00018-5Search in Google Scholar
9. Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter, Berlin, Germany (2012). ISBN 978–3110254563.10.1515/9783110254600Search in Google Scholar
10. Darie, R. N., Bercea, M., Kozlowski, M., Spirindon, I.: Evaluation of properties of LDPE/OAK wood composites exposed to artificial ageing. Cellul. Chem. Technol. 45, 127 (2011).Search in Google Scholar
11. Le Duigou, A., Deux, J. M., Davies, P., Baley, C.: PLLA/Flax Mat/Balsa/Bio-Sandwish manufacture and mechanical properties. Appl. Compos. Mater. 18, 421 (2011).10.1007/s10443-010-9173-8Search in Google Scholar
12. Mohanty, A. K., Misra, M., Hinrichsen, G.: Biofibres, biodegradable polymers and biocomposites. Macromol. Mater. Eng. 24, 276 (2000).10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-WSearch in Google Scholar
13. Saheb, N. D., Jog, J. P.: Natural fiber polymer composites. Adv. Polym. Technol. 18, 351 (2009).10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-XSearch in Google Scholar
14. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Verpoest, I.: Influence of processing and chemical treatment of flax fibers on their composites. Comp. Sci. Technol. 63, 1241 (2003).10.1016/S0266-3538(03)00093-9Search in Google Scholar
15. Galamboš, M., Daňo, M., Rosskopfová, O., Šeršeň, F., Kufčáková, J., Adamcová, R., Rajec, P.: Effect of gamma-irradiation on adsorption properties of Slovak bentonites. J. Radioanal. Nucl. Chem. 292, 481 (2012).10.1007/s10967-012-1638-9Search in Google Scholar
16. Krajňák, A., Viglašová, E., Galamboš, G., Krivosudský, L.: Kinetics, thermodynamics and isotherm parameters of uranium(VI) adsorption on natural and HDTMA-intercalated bentonite and zeolite. Desalin. Water Treat. 127, 272 (2018).10.5004/dwt.2018.22762Search in Google Scholar
17. Viglašová, E., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., Soja, G., Rompel, A., Matík, M., Briančin, J.: Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manage. 79, 385 (2018).10.1016/j.wasman.2018.08.005Search in Google Scholar
18. Albano, C., Reyes, J., Gonzáles, J, Ichazo, M., Poleo, R., Davidson, E.: Mathematical analysis of the mechanical behavior of 60Co-irradiated polyolefin blends with and without wood flour. Polym. Degrad. Stab. 73, 39 (2001).10.1016/S0141-3910(01)00065-9Search in Google Scholar
19. Chapiro, A.: Radiation chemistry of polymeric system, high polymers (1962), Vol. 15, Interscience Publishers, New York, p. 379.Search in Google Scholar
20. Singh, A., Silverman, J.: Radiation processing of polymers (1992), Silverman, Hanser, Munich, p. 14.Search in Google Scholar
21. Czvikovszky,T.: Electron-beam processing of wood fiber reinforced polypropylene. Rad. Phys. Chem. 47, 425 (1996).10.1016/0969-806X(95)00131-GSearch in Google Scholar
22. Paul Guin, J., Bhardwaj, Y. K., Varshney, L.: Radiation grafting: a voyage from bio-waste corn husk to an efficient thermostable adsorbent. Carbohydr. Polym. 183, 151 (2018).10.1016/j.carbpol.2017.11.101Search in Google Scholar PubMed
23. Malekie, S., Ziaie, F., Esmaeli, A.: Study on dosimetry characteristics of polymer-CNT nanocomposites: effect of polymer matrix. Nucl. Instrum. Methods Phys. Res. A 816, 101 (2016).10.1016/j.nima.2016.01.077Search in Google Scholar
24. Malekie, S., Salehpour, B.: Evaluation of gamma radiation response of electrolyte, MKP and MKT capacitors in various frequencies. Radiochim. Acta 105, 577 (2017).10.1515/ract-2016-2692Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment
- Determination of 210Po in low-level wild bilberries reference material for quality control assurance in environmental analysis using extraction chromatography and α-particle spectroscopy
- Chemical effects of nuclear transformations and possible formation of unknown derivatives with N-phenylquinazolinium structure
- An approach for the efficient immobilization of 79Se using Fe-OOH modified GMZ bentonite
- Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4−˙ free radicals in slightly acidic simulated atmospheric water
- Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides
- Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites
- Precise volume fraction measurement for three-phase flow meter using 137Cs gamma source and one detector
Articles in the same Issue
- Frontmatter
- Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment
- Determination of 210Po in low-level wild bilberries reference material for quality control assurance in environmental analysis using extraction chromatography and α-particle spectroscopy
- Chemical effects of nuclear transformations and possible formation of unknown derivatives with N-phenylquinazolinium structure
- An approach for the efficient immobilization of 79Se using Fe-OOH modified GMZ bentonite
- Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4−˙ free radicals in slightly acidic simulated atmospheric water
- Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides
- Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites
- Precise volume fraction measurement for three-phase flow meter using 137Cs gamma source and one detector