Home Physical Sciences Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides
Article
Licensed
Unlicensed Requires Authentication

Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides

  • Mohamed F. Attallah EMAIL logo , Maha A. Youssef and Diaa M. Imam
Published/Copyright: June 15, 2019

Abstract

The aim of this work is directed to prepare nanoparticles of egg shell hydroxyapatite-humic acid (ESHAP-HA) as a novel composite material. FTIR, EDX, TEM, XRD, and SEM identified it. Sorption characteristic studies on ESHAP-HA at different pH of solutions, shaking time, initial ion concentration and complexing agent were performed at 152,154Eu, 99Mo and 63Ni. The results were demonstrated that selectivity removal of 152,154Eu (~96 %) rather than 99Mo (8.5 %) and 63Ni (26.7 %). The sorption capacity of 152,154Eu(III), 63Ni(II) and 99Mo(VI) are 80.1, 12.5 and 2.3 mg/g, respectively, onto the ESHAP-HA nanoparticles. Application on the eclectic removal of 152,154Eu from mixed radionuclides (152,154Eu, 60Co, and 137Cs) solution has been evaluated. It concluded that the prepared ESHAP-HA composite material is a promising and recommended for separation of radio lanthanides and/or actinides (such as Am) from nuclear liquid waste and/or contaminated aquatic environmental.

References

1. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J., Serarols, J.: Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132 (2006).10.1016/j.seppur.2005.11.016Search in Google Scholar

2. Wright, K. E., Hartmann, T., Fujita, Y.: Including mineral precipitation in groundwater by addition of phosphate. Geochem. Trans. 12, 8 (2011).10.1186/1467-4866-12-8Search in Google Scholar PubMed PubMed Central

3. Moore, R. C., Gasser, M., Awwad, N.: Sorption of plutonium(VI) by hydroxyapatite. J. Radioanal. Nucl. Chem. 263(1), 97 (2005).10.1007/s10967-005-0019-zSearch in Google Scholar

4. Tõnsuaadu, K., Viipsi, K., Trikkel, A.: EDTA impact on Cd2+ migration in apatite–water system. J. Hazard. Mater. 154, 491 (2008).10.1016/j.jhazmat.2007.10.051Search in Google Scholar PubMed

5. Wang, Y. J., Chen, J. H., Cui, Y. X., Wang, S. Q., Zhou, D. M.: Effects of low-molecular weight organic acids on Cu (II) adsorption onto hydroxyapatite nanoparticles. J. Hazard. Mater. 162, 1135 (2009).10.1016/j.jhazmat.2008.06.001Search in Google Scholar PubMed

6. Xiangke, W., Wenming, D., Yingchum, G.: Sorption characteristics of radio europium on bentonite and kaolinite. J. Radioanal. Nucl. Chem. 250, 267 (2001).10.1023/A:1017922924421Search in Google Scholar

7. Srinivasa, C., Upendra, K., Jayasankar, C.: Luminescence properties of Eu3+ ions in phosphate-based bioactive glasses. Solid State Sci. 13(6), 1309 (2011).10.1016/j.solidstatesciences.2011.03.027Search in Google Scholar

8. Lowe, B., Venkatesan, J., Anil, S., Shim, M. S., Kim, S. K.: Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nano composites for bone tissue engineering. Int. J. Biol. Macromol. 93, 1479 (2016).10.1016/j.ijbiomac.2016.02.054Search in Google Scholar PubMed

9. Griffith, J. R.: The chemistry of coatings. J. Chem. Educ. 58, 956 (1981).10.1021/ed058p956Search in Google Scholar

10. Catrouillet, C., Davranche, M., Dia, A., Coz, M. B., Marsac, R., Pourret, O., Gruau, G.: Geochemical modeling of Fe(II) binding to humic and fulvic acids. Chem. Geol. 372, 109 (2014).10.1016/j.chemgeo.2014.02.019Search in Google Scholar

11. Joseph, C., Schmeide, K., Sachs, S., Brendler, V., Geipel, G., Bernhard, G.: Sorption of uranium (VI) onto Opalinus clay in the absence and presence of humic acid in Opalinus clay pore water. Chem. Geol. 284, 240 (2011).10.1016/j.chemgeo.2011.03.001Search in Google Scholar

12. Sheng, G., Li, J., Shaod, D., Hu, J., Chen, C., Chen, Y., Wang, X.: Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J. Hazard. Mater. 178, 333 (2010).10.1016/j.jhazmat.2010.01.084Search in Google Scholar PubMed

13. Stevenson, F. J.: Humus Chemistry: Genesis, Composition, Reactions, John Wiley and Sons, New York, NY, USA (1994).Search in Google Scholar

14. Yang, K., Zhu, L., Lou, B., Chen, B.: Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties. Chemosphere 61, 116 (2005).10.1016/j.chemosphere.2005.02.095Search in Google Scholar PubMed

15. Liqiang, T., Xiangxue, W., Xiaoli, T., Huiyang, M., Changlun, C., Tasawar, H., Ahmed, A., Tao, W., Songsheng, L., Xiangke, W.: Bonding properties of humic acid with attapulgite and its influence on U(VI) sorption. Chem. Geol. 464, 91 (2017).10.1016/j.chemgeo.2017.01.024Search in Google Scholar

16. Budnyak, T. M., Yanovska, E. S., Kołodyńska, D., Sternik, D., Pylypchuk, I. V., Ischenko, M. V., Tertykh, V. A.: Preparation and properties of organomineral adsorbent obtained by sol–gel technology. Therm. Anal. Calorim. 125, 1335 (2016).10.1007/s10973-016-5581-9Search in Google Scholar

17. Wang, D., Bradford, S. A., Harvey, R. W., Gao, B., Cang, L., Zhou, D.: Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environ. Sci. Technol. 46, 2738 (2012).10.1021/es203784uSearch in Google Scholar PubMed

18. Singh, B. K., Kumar, S., Jain, A., Tomar, R., Tomar, B. S., Ramanathan, S., Manchanda, V. K.: Role of magnetite and humic acid in radionuclide migration in the environment. J. Contam. Hydrol. 106, 144 (2009).10.1016/j.jconhyd.2009.02.004Search in Google Scholar PubMed

19. Attallah, M. F., Abd-Elhamid, A. I., Ahmed, I. M., Aly, H. F.: Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. J. Mol. Liq. 26, 379 (2018).10.1016/j.molliq.2018.04.050Search in Google Scholar

20. Attallah, M. F., Borai, E. H., Allan, K. F.: Kinetic and thermodynamic studies for cesium removal from low-level liquid radioactive waste using impregnated polymeric material. Radiochemistry 51, 622 (2009).10.1134/S1066362209060113Search in Google Scholar

21. Rizk, H. E., Attallah, M. F., Ali, A. M. I.: Investigations on sorption performance of some radionuclides, heavy metals and lanthanides using mesoporous adsorbent material. J. Radioanal. Nucl. Chem. 314, 2475 (2017).10.1007/s10967-017-5620-4Search in Google Scholar

22. Attallah, M. F., Elgazzar, A. H., Borai, E. H., El-Tabl, A. S.: Preparation and characterization of aluminum silicotitante: ion exchange behavior for some lanthanides and iron. Chem. Technol. Biotechnol. 91, 2243 (2016).10.1002/jctb.4810Search in Google Scholar

23. Zheng, T., Yang, Z., Gui, D., Liu, Z., Wang, X., Dai, X., Liu, S., Zhang, L., Gao, Y., Chen, L., Sheng, D., Wang, Y., Diwu, J., Wang, J., Zhou, R., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat. Commun. 8, 15369 (2017).10.1038/ncomms15369Search in Google Scholar PubMed PubMed Central

24. Jiang, Q., Ghim, D., Cao, S., Tadepalli, S., Liu, K., Kwon, H., Luan, J., Min, Y., Jun, Y. S., Singamaneni, S.: Photothermally-active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ. Sci. Technol. 53(1), 412 (2019).10.1021/acs.est.8b02772Search in Google Scholar PubMed

25. Borai, E. H., Hilal, M. A., Attallah, M. F., Shehata, F. A.: Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochim. Acta 96, 441 (2008).10.1524/ract.2008.1506Search in Google Scholar

26. Shady, S. A., Attallah, M. F., Borai, E. H.: Efficient sorption of light rare earth elements using resorcinol-formaldehyde polymeric resin. Radiochemistry 53(4), 396 (2011).10.1134/S1066362211040102Search in Google Scholar

27. Li, Y., Yang, Z., Wang, Y., Bai, Z., Zheng, T., Dai, X., Liu, S., Gui, D., Liu, W., Chen, M., Chen, L., Diwu, J., Zhu, L., Zhou, R., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 8, 1354 (2017).10.1038/s41467-017-01208-wSearch in Google Scholar PubMed PubMed Central

28. Attallah, M. F., Rizk, S. E., Shady, S. A.: Separation of 152+154Eu, 90Sr from radioactive waste effluent using liquid–liquid extraction by polyglycerol phthalate. Nucl. Sci. Technol. 29, 84 (2018).10.1007/s41365-018-0423-zSearch in Google Scholar

29. Imam, D. M., Moussa, S. I., Attallah, M. F.: Sorption behavior of some radionuclides using prepared adsorbent of hydroxyapatite from biomass waste material. J. Radioanal. Nucl. Chem. 319, 997 (2019).10.1007/s10967-018-06403-7Search in Google Scholar

30. International Humic Substances Society (2013). http://www.humicsubstances.org.Search in Google Scholar

31. Campitelli, P., Ceppi, S.: Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma 144, 325 (2008).10.1016/j.geoderma.2007.12.003Search in Google Scholar

32. Campitelli, P., Velasco, M., Ceppi, S.: Characterization of humic acids derived from rabbit manure treated by composting-vermicomposting process. J. Soil Sci. Plant Nutr. 12(4), 875 (2012).10.4067/S0718-95162012005000039Search in Google Scholar

33. Khil’ko, S. L., Kovtun, A., Rybachenko, V. I.: Potentiometric titration of humic acids. Solid Fuel Chem. 45(5), 337 (2011).10.3103/S0361521911050028Search in Google Scholar

34. Xiaowei, L., Meiyan, X., Jian, Y., Zhiding, H.: Compositional and functional features of humic acid-like fraction from vermicomposting of sewage sludge and cow dung. J. Hazard Mater. 1185, 740 (2011).10.1016/j.jhazmat.2010.09.081Search in Google Scholar

35. Andjelkovic, T., Perovic, J., Purenovic, M., Blagojevic, S., Nikoli, R., Andjelkovic, D., Bojic, A.: A direct potentiometric titration study of the dissociation of humic acid with selectively blocked functional groups. Ecl. Quim. Sao Paulo 31(3), 39 (2006).10.1590/S0100-46702006000300005Search in Google Scholar

36. Atalay, B. Y., Carbonaro, F. R., Ditoro, M. D.: Distribution of proton dissociation constants for model humic and fulvic acid molecules. Environ. Sci. Technol. 43, 3626 (2009).10.1021/es803057rSearch in Google Scholar PubMed

37. Yariv, S.: The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl. Clay Sci. 24, 225 (2004).10.1016/j.clay.2003.04.002Search in Google Scholar

38. Attallah, M. F., Imam, D. M.: Green approach for radium isotopes removal from TENORM waste using humic substances as environmental friendly. Appl. Radiat. Isot. 140, 201 (2018).10.1016/j.apradiso.2018.07.019Search in Google Scholar PubMed

39. Senesi, N., D’Orazio, V., Ricca, G.: Humic acids in the first generation of Euro soils. Geoderma 116, 325 (2003).10.1016/S0016-7061(03)00107-1Search in Google Scholar

40. Brigante, M., Zanini, G., Avena, M.: Effect of humic acids on the adsorption of paraquat by goethite. J. Hazard. Mater. 184, 241 (2010).10.1016/j.jhazmat.2010.08.028Search in Google Scholar PubMed

41. Zhang, J., Dai, J., Wang, R., Li, F., Wang, W.: Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids Surf. A 335, 194 (2009).10.1016/j.colsurfa.2008.11.006Search in Google Scholar

42. Iglesias, J., De Saldana, E. G., Jaen, J. A.: On the tannic acid interaction with metallic iron. Hyperf. Interact. 134, 109 (2001).10.1023/A:1013838600599Search in Google Scholar

43. Weng, L., Temminghoff, M. J., Van, W. H.: Interpretation of humic acid coagulation and soluble soil organic matter using a calculated electrostatic potential. Eur. J. Soil Sci. 53, 575 (2002).10.1046/j.1365-2389.2002.00455.xSearch in Google Scholar

44. Wei, W., Zhang, X., Cui, J., Wei, Z.: Interaction between low molecular weight organic acids and hydroxyapatite with different degrees of crystallinity. Colloids Surf. A 392, 67 (2011).10.1016/j.colsurfa.2011.09.034Search in Google Scholar

45. Gardea-Torresdey, J., Becker-Hapak, M., Hosea, M., Darnall, D.: Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ. Sci. Technol. 24, 1372 (1990).10.1021/es00079a011Search in Google Scholar

46. Attallah, M. F., Rizk, S. E., El Afifi, E. M.: Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers. J. Radioanal. Nucl. Chem. 317, 933 (2018).10.1007/s10967-018-5938-6Search in Google Scholar

47. Borai, E., Attallah, M., Koivula, R., Paajanen, A., Harjula, R.: Separation of europium from cobalt using antimony silicates in sulfate acidic media. Min. Proc. Ext. Met. Rev. 33(3), 204 (2012).10.1080/08827508.2011.562951Search in Google Scholar

48. Maccarthy, P.: The principles of humic substances. Soil Sci. 166(11), 738 (2001).10.1097/00010694-200111000-00003Search in Google Scholar

49. Gad, H. M. H., Youssef, M. A.: Sorption behavior of Eu(III) from an aqueous solution onto modified hydroxyapatite: kinetics, modeling and thermodynamics. Environ. Technol. 39(20), 2583 (2018).10.1080/09593330.2017.1362036Search in Google Scholar PubMed

50. Tana, X., Fang, M., Li, J., Lua, Y., Wang, X.: Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J. Hazard. Mater. 168, 458 (2009).10.1016/j.jhazmat.2009.02.051Search in Google Scholar PubMed

51. Tan, X., Fan, Q., Wang, X., Grambow, B.: Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ. Sci. Technol. 43(9), 3115 (2009).10.1021/es803431cSearch in Google Scholar PubMed

52. El-Eswed, B., Khalili, F.: Adsorption of Cu(II) and Ni(II) on solid humic acid, from the Azraq area, Jordan. J. Colloid Interface Sci. 299, 497 (2006).10.1016/j.jcis.2006.02.048Search in Google Scholar PubMed

53. Sounthararajah, D. P., Loganathan, P., Kandasamy, J., Vigneswaran, S.: Effects of humic acid and suspended solids on the removal of heavy metals from water by adsorption onto granular activated carbon. Int. J. Environ. Res. Public Health 12(9), 10475 (2015).10.3390/ijerph120910475Search in Google Scholar PubMed PubMed Central

54. Reddy, D. H. K., Lee, S. M., Seshaiah, K.: Biosorption of toxic heavy metal ions from water environment using honeycomb biomass – an industrial waste material. Water Air Soil Pollut. 223, 5967 (2012).10.1007/s11270-012-1332-0Search in Google Scholar

55. Shehaa, R. R., Moussaa, S. I., Attiaa, M. A., Sadeekb, S. A., Somedaa, H. H.: Novel substituted hydroxyapatite nanoparticles as a solid phase for removal of Co(II) and Eu(III) ions from aqueous solutions. J. Environ. Chem. Eng. 4, 4808 (2016).10.1016/j.jece.2016.11.005Search in Google Scholar

56. Bartczak, P., Norman, M., Klapiszewski, L., Karwańska, N., Kawalec, M., Baczyńska, M., Wysokowski, M., Zdarta, J., Ciesielczyk, F., Jesionowski, T.: Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: a kinetic and equilibrium study. Arab. J. Chem. 11, 1209 (2018).10.1016/j.arabjc.2015.07.018Search in Google Scholar

57. Zamani, S., Salahi, E., Mobasherpour, I.: Removal of nickel from aqueous solution by nano hydroxyapatite originated from Persian Gulf Corals. Can. Chem. Trans. 1(3), 173 (2013).10.13179/canchemtrans.2013.01.03.0033Search in Google Scholar

58. Khaskheli, M. I., Memon, S. Q., Jatoi, W. B., Chandio, Z. A., Shar, G. K., Malik, A., Khan, S.: Competitive sorption of nickel, copper, lead and cadmium on okra leaves (Abelmoschus esculentus). Global NEST J. 19, 278 (2017).10.30955/gnj.001944Search in Google Scholar

59. Nayarados, S. E., Jose, S. S., Mitiko, Y.: Study on removal of molybdenum from aqueous solution using sugarcane bagasse ash adsorbent. International Nuclear Atlantic Conference, Brazil (2011), 24–28 October.Search in Google Scholar

60. Attallah, M. F., Moussa, S. I., Ahmed, I. M.: Distribution coefficient properties of carrier free 99Mo as a homolog of Seaborgium (Sg) from some acid solutions using ion exchange resin. J. Mol. Liq. 277, 323 (2019).10.1016/j.molliq.2018.12.100Search in Google Scholar

61. Texier, A. C., Andres, Y., Le Cloirec, P.: Selective biosorption of lanthanide (La, EU, Yb) ions by an immobilized bacterial biomass. Water Sci. Technol. 42(5–6), 91 (2000).10.2166/wst.2000.0500Search in Google Scholar

62. Granados-Correa, F., Vilchis-Granados, J., Jiménez-Reyes, M., Quiroz-Granados, L. A.: Adsorption behavior of La(III) and Eu(III) ions from aqueous solutions by hydroxyapatite: kinetic, isotherm, and thermodynamic studies. J. Chem. 2013, 9 (2013), Article ID 751696.10.1155/2013/751696Search in Google Scholar

63. Misaelides, P., Sarri, S., Zamboulis, D., Gallios, G., Zhuravlev, I., Strelko, V. V.: Separation of europium from aqueous solutions using Al3+- and Fe3+-doped zirconium and titanium phosphates. J. Radioanal. Nucl. Chem. 268(1), 53 (2006).10.1007/s10967-006-0123-8Search in Google Scholar

64. Moreno, J. C., Gomez, R., Giraldo, L.: Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal. Materials 3, 452 (2010).10.3390/ma3010452Search in Google Scholar

65. Villaescusa, I., Fiol, N., Martinez, M., Miralles, N., Poch, J., Serarols, J.: Removal of copper and nickel ions from aqueous solutions by grape stalk wastes. Water Res. 38(4), 992 (2004).10.1016/j.watres.2003.10.040Search in Google Scholar PubMed

66. Farajzadeh, M. A., Monji, A. B.: Adsorption characteristics of wheat bran towards heavy metal cations. Sep. Purif. Technol. 38(3), 197 (2004).10.1016/j.seppur.2003.11.005Search in Google Scholar

67. Dehghani, M. H., Sanaei, D., Ali, I., Bhatnagar, A.: Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671 (2016).10.1016/j.molliq.2015.12.057Search in Google Scholar

68. Sheng, D., Zhu, L., Xu, C., Xiao, C., Wang, Y., Wang, Y., Chen, L., Diwu, J., Chen, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Efficient and selective uptake of TcO4− by a cationic metal–organic framework material with open Ag+ sites. Environ. Sci. Technol. 51(6), 3471 (2017).10.1021/acs.est.7b00339Search in Google Scholar PubMed

69. Zhu, L., Sheng, D., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y., Wang, Y., Chen, L., Xiao, C., Chen, J., Zhou, R., Zhang, C., Farha, O. K., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Identifying the recognition site for selective trapping of 99TcO4− in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc. 139(42), 14873 (2017).10.1021/jacs.7b08632Search in Google Scholar PubMed

70. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Diwu, J., Wang, J., Zhou, R., Chai, Z., Wang, S.: Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 51(7), 3911 (2017).10.1021/acs.est.6b06305Search in Google Scholar PubMed

71. Seshadri, H., Sinha, P. K.: Efficient decomposition of liquid waste containing EDTA by advanced oxidation nanotechnology. J. Radioanal. Nucl. Chem. 292, 829 (2012).10.1007/s10967-011-1595-8Search in Google Scholar

72. Lin, J., Zhan, Y.: Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chem. Eng. J. 200–202, 202 (2012).10.1016/j.cej.2012.06.039Search in Google Scholar

73. Zhan, Y. H., Lin, J. W., Li, J.: Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper (II). Environ. Sci. Pollut. Res. 20, 2512 (2013).10.1007/s11356-012-1136-1Search in Google Scholar PubMed

74. Rey, C., Combes, C., Drouet, C., Sfihi, H., Barroug, A.: Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater. Sci. Eng. C 27, 198 (2007).10.1016/j.msec.2006.05.015Search in Google Scholar

75. Bouyarmane, H., Asri, S. E., Rami, A., Roux, C., Mahly, M. A., Saoiabi, A., Coradinc, T., Laghzizil, A.: Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: influence of porosity and surface interactions. J. Hazard. Mater. 181, 736 (2010).10.1016/j.jhazmat.2010.05.074Search in Google Scholar PubMed

76. Antonio, G., Antonio, V.: Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2, 15 (2016).10.1007/s40726-015-0024-ySearch in Google Scholar

Received: 2019-01-21
Accepted: 2019-05-03
Published Online: 2019-06-15
Published in Print: 2020-01-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3108/html
Scroll to top button