Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
-
Jian-hui Lan
, Shi-lin Jiang , Ya-lan Liu , Xue-miao Yin , Ya-xing Wang , Tai-qi Yin , Shu-ao Wang , Cong-zhi Wang , Wei-qun Shiand Zhi-fang Chai
Abstract
Developing necessary reprocessing techniques to meet the remarkable increase of spent nuclear fuels (SNFs) is crucial for the sustainable development of nuclear energy. This review summarizes recent research progresses related to the SNF reprocessing in China, with an emphasis on actinides separation over lanthanides through three different techniques, hydrometallurgical reprocessing, pyrometallurgical processes, and selective crystallization based separation. Some future perspectives with respect to advanced actinide separation are also given.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21790373
Award Identifier / Grant number: 51604252
Funding source: Natural Science Foundation of China
Award Identifier / Grant number: 91426302
Funding statement: This work was supported by the Major Program of National Natural Science Foundation of China (No. 21790373) and the general programs of National Natural Science Foundation of China (No. 51604252) and the Major Research Plan “Breeding and Transmutation of Nuclear Fuel in Advanced Nuclear Fission Energy System” of the Natural Science Foundation of China (No. 91426302).
References
1. International Atomic Energy Agency. Spent fuel reprocessing options. International Atomic Energy Agency, Vienna, Austria (2009).Search in Google Scholar
2. Hudson, M. J., Harwood, L. M., Laventine, D. M., Lewis, F. W.: Use of soft heterocyclic N-Donor ligands to separate actinides and lanthanides. Inorg. Chem. 52, 3414 (2013).10.1021/ic3008848Search in Google Scholar PubMed
3. Panak, P. J., Geist, A.: Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-Donor ligands. Chem. Rev. 113, 1199 (2013).10.1021/cr3003399Search in Google Scholar PubMed
4. Kolarik, Z.: Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-donors in solutions. Chem. Rev. 108, 4208 (2008).10.1021/cr078003iSearch in Google Scholar PubMed
5. Nash, K. L., Madic, C., Mathur, J. N., Lacquement, J.: Actinide separation science and technology. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements. Springer Netherlands, Dordrecht (2011), p. 2622.10.1007/978-94-007-0211-0_24Search in Google Scholar
6. Ekberg, C., Fermvik, A., Retegan, T., Skarnemark, G., Foreman, M., Hudson, M., Englund, S., Nilsson, M.: An overview and historical look back at the solvent extraction using nitrogen donor ligands to extract and separate An (III) from Ln (III). Radiochim. Acta 96, 225 (2008).10.1524/ract.2008.1483Search in Google Scholar
7. Neidig, M. L., Clark, D. L., Martin, R. L.: Covalency in f-element complexes. Coord. Chem. Rev. 257, 394 (2013).10.1016/j.ccr.2012.04.029Search in Google Scholar
8. Vallet, V., Macak, P., Wahlgren, U., Grenthe, I.: Actinide chemistry in solution, quantum chemical methods and models. Theor. Chem. Acc. 115, 145 (2006).10.1007/s00214-005-0051-7Search in Google Scholar
9. Schreckenbach, G., Shamov, G. A.: Theoretical actinide molecular science. Accounts Chem. Res. 43, 19 (2010).10.1021/ar800271rSearch in Google Scholar PubMed
10. Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P., Bursten, B. E. Theoretical studies of the electronic structure of compounds of the actinide elements. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements. Springer Netherlands, Dordrecht, (2011), p. 1893.10.1007/978-94-007-0211-0_17Search in Google Scholar
11. Pepper, M., Bursten, B. E.: The Electronic-structure of actinide-containing molecules – a challenge to applied quantum-chemistry. Chem. Rev. 91, 719 (1991).10.1021/cr00005a005Search in Google Scholar
12. Lan, J. H., Shi, W. Q., Yuan, L. Y., Zhao, Y. L., Li, J., Chai, Z. F.: Trivalent actinide and lanthanide separations by tetradentate nitrogen ligands: a quantum chemistry study. Inorg. Chem. 50, 9230 (2011).10.1021/ic200078jSearch in Google Scholar PubMed
13. Lan, J. H., Shi, W. Q., Yuan, L. Y., Feng, Y. X., Zhao, Y. L., Chai, Z. F.: Thermodynamic study on the complexation of Am(III) and Eu(III) with tetradentate nitrogen ligands: a probe of complex species and reactions in aqueous solution. J. Phys. Chem. A 116, 504 (2012).10.1021/jp206793fSearch in Google Scholar PubMed
14. Lan, J. H., Shi, W. Q., Yuan, L. Y., Li, J., Zhao, Y. L., Chai, Z. F.: Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coord. Chem. Rev. 256, 1406 (2012).10.1016/j.ccr.2012.04.002Search in Google Scholar
15. Xiao, C. L., Wang, C. Z., Lan, J. H., Yuan, L. Y., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Selective separation of Am(III) from Eu(III) by 2,9-Bis(dialkyl-1,2,4-triazin-3-yl)-1,10-phenanthrolines: a relativistic quantum chemistry study. Radiochim. Acta 102, 875 (2014).10.1515/ract-2014-2246Search in Google Scholar
16. Lan, J. H., Wang, C. Z., Wu, Q. Y., Wang, S. A., Feng, Y. X., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: A Quasi-relativistic density functional theory study of the Actinyl(VI, V) (An=U, Np, Pu) complexes with a six-membered macrocycle containing Pyrrole, Pyridine, and Furan subunits. J. Phys. Chem. A 119, 9178 (2015).10.1021/acs.jpca.5b06370Search in Google Scholar PubMed
17. Wu, H., Wu, Q. Y., Wang, C. Z., Lan, J. H., Liu, Z. R., Chai, Z. F., Shi, W. Q.: Theoretical insights into the separation of Am(III) over Eu(III) with PhenBHPPA. Dalton Trans. 44, 16737 (2015).10.1039/C5DT02528ASearch in Google Scholar PubMed
18. Wu, H., Wu, Q. Y., Wang, C. Z., Lan, J. H., Liu, Z. R., Chai, Z. F., Shi, W. Q.: New insights into the selectivity of four 1,10-phenanthroline-derived ligands toward the separation of trivalent actinides and lanthanides: a DFT based comparison study. Dalton Trans. 45, 8107 (2016).10.1039/C6DT00296JSearch in Google Scholar PubMed
19. Kong, X. H., Wu, Q. Y., Wang, C. Z., Lan, J. H., Chai, Z. F., Nie, C. M., Shi, W. Q.: Insight into the extraction mechanism of americium(III) over Europium(III) with pyridylpyrazole: a relativistic quantum chemistry study. J. Phys. Chem. A 122, 4499 (2018).10.1021/acs.jpca.8b00177Search in Google Scholar PubMed
20. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Desreux, J. F., Vidick, G., Bouslimani, N., Modolo, G., Wilden, A., Sypula, M., Vu, T.-H., Simonin, J.-P.: Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J. Am. Chem. Soc. 133, 13093 (2011).10.1021/ja203378mSearch in Google Scholar PubMed
21. Xiao, C. L., Wu, Q. Y., Wang, C. Z., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Design criteria for tetradentate phenanthroline-derived heterocyclic ligands to separate Am(III) from Eu(III). Sci. China Chem. 57, 1439 (2014).10.1007/s11426-014-5215-7Search in Google Scholar
22. Huang, P. W., Wang, C. Z., Wu, Q. Y., Lan, J. H., Song, G., Chai, Z. F., Shi, W. Q.: Understanding Am3+/Cm3+ separation with H(4)TPAEN and its hydrophilic derivatives: a quantum chemical study. Phys. Chem. Chem. Phys. 20, 14031 (2018).10.1039/C7CP08441BSearch in Google Scholar
23. Huang, P. W., Wang, C. Z., Wu, Q. Y., Lan, J. H., Song, G., Chai, Z. F., Shi, W. Q.: Uncovering the impact of ‘capsule’ shaped amine-type ligands on Am(III)/Eu(III) separation. Phys. Chem. Chem. Phys. 20, 1030 (2018).10.1039/C7CP05381ASearch in Google Scholar PubMed
24. Xiao, C. L., Wang, C. Z., Yuan, L. Y., Li, B., He, H., Wang, S., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Excellent selectivity for actinides with a Tetradentate 2,9-Diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg. Chem. 53, 1712 (2014).10.1021/ic402784cSearch in Google Scholar PubMed
25. Xiao, C. L., Wang, C. Z., Mei, L., Zhang, X. R., Wall, N., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation. Dalton Trans. 44, 14376 (2015).10.1039/C5DT01766ASearch in Google Scholar
26. Xiao, C. L., Wu, Q. Y., Mei, L., Yuan, L. Y., Wang, C. Z., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: High selectivity towards small copper ions by a preorganized phenanthroline-derived tetradentate ligand and new insight into the complexation mechanism. Dalton Trans. 43, 12470 (2014).10.1039/C4DT01489HSearch in Google Scholar
27. Zhang, X. R., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: A new solvent system containing N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO22+ extraction. Sep. Purif. Technol. 168, 232 (2016).10.1016/j.seppur.2016.05.056Search in Google Scholar
28. Xiao, C. L., Wu, Q. Y., Wang, C. Z., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Inorg. Chem. 53, 10846 (2014).10.1021/ic500816zSearch in Google Scholar PubMed
29. Wu, Q. Y., Song, Y. T., Ji, L., Wang, C. Z., Chai, Z. F., Shi, W. Q.: Theoretically unraveling the separation of Am(III)/Eu(III): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties. Phys. Chem. Chem. Phys. 19, 26969 (2017).10.1039/C7CP04625ASearch in Google Scholar PubMed
30. Wang, C. Z., Shi, W. Q., Lan, J. H., Zhao, Y. L., Wei, Y. Z., Chai, Z. F.: Complexation behavior of Eu(III) and Am(III) with CMPO and Ph2CMPO ligands: insights from density functional theory. Inorg. Chem. 52, 10904 (2013).10.1021/ic400895dSearch in Google Scholar PubMed
31. Wang, C. Z., Lan, J. H., Wu, Q. Y., Zhao, Y. L., Wang, X. K., Chai, Z. F., Shi, W. Q.: Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides. Dalton Trans. 43, 8713 (2014).10.1039/c4dt00032cSearch in Google Scholar PubMed
32. Luo, J., Wang, C. Z., Lan, J. H., Wu, Q. Y., Zhao, Y. L., Chai, Z. F., Nie, C. M., Shi, W. Q.: Theoretical studies on the AnO(2)(n+) (An=U, Np; n=1, 2) complexes with di-(2-ethylhexyl) phosphoric acid. Dalton Trans. 44, 3227 (2015).10.1039/C4DT03321CSearch in Google Scholar PubMed
33. Luo, J., Wang, C. Z., Lan, J. H., Wu, Q. Y., Zhao, Y. L., Chai, Z. F., Nie, C. M., Shi, W. Q.: Theoretical studies on the complexation of Eu(III) and Am(III) with HDEHP: structure, bonding nature and stability. Sci. China Chem. 59, 324 (2016).10.1007/s11426-015-5489-4Search in Google Scholar
34. Huang, P. W., Wang, C. Z., Wu, Q. Y., Lan, J. H., Song, G., Chai, Z. F., Shi, W. Q.: Theoretical studies on the synergistic extraction of Am3+ and Eu3+ with CMPO-HDEHP and CMPO-HEH EHP systems. Dalton Trans. 47, 5474 (2018).10.1039/C8DT00134KSearch in Google Scholar
35. Su, L. L., Liu, K., Liu, Y. L., Wang, L., Yuan, L. Y., Wang, L., Li, Z. J., Zhao, X. L., Chai, Z. F., Shi, W. Q.: Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts. Electrochim. Acta 147, 87 (2014).10.1016/j.electacta.2014.09.095Search in Google Scholar
36. Liu, K., Tang, H. B., Pang, J. W., Liu, Y. L., Feng, Y. X., Chai, Z. F., Shi, W. Q.: Electrochemical properties of uranium on the liquid gallium electrode in LiCl-KCl eutectic. J. Electrochem. Soc. 163, D554 (2016).10.1149/2.1191609jesSearch in Google Scholar
37. Liu, Y. L., Liu, K., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Estimation of the composition of intermetallic compounds in LiCl-KCl molten salt by cyclic voltammetry. Faraday Discuss. 190, 387 (2016).10.1039/C5FD00220FSearch in Google Scholar PubMed
38. Liu, Y. L., Yan, Y. D., Han, W., Zhang, M. L., Yuan, L. Y., Lin, R. S., Ye, G. A., He, H., Chai, Z. F., Shi, W. Q.: Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl. Electrochim. Acta 114, 180 (2013).10.1016/j.electacta.2013.09.154Search in Google Scholar
39. Liu, Y. L., Yuan, L. Y., Ye, G. A., Kui, L., Zhu, L., Zhang, M. L., Chai, Z. F., Shi, W. Q.: Co-reduction behaviors of lanthanum and aluminium ions in LiCl-KCl eutectic. Electrochim. Acta 147, 104 (2014).10.1016/j.electacta.2014.08.114Search in Google Scholar
40. Sedmidubsky, D., Konings, R. J. M., Soucek, P.: Ab-initio calculations and phase diagram assessments of An-Al systems (An=U, Np, Pu). J. Nucl. Mater. 397, 1 (2010).10.1016/j.jnucmat.2009.11.023Search in Google Scholar
41. Cassayre, L., Caravaca, C., Jardin, R., Malmbeck, R., Masset, P., Mendes, E., Serp, J., Soucek, P., Glatz, J. P.: On the formation of U-Al alloys in the molten LiCl-KCl eutectic. J. Nucl. Mater. 378, 79 (2008).10.1016/j.jnucmat.2008.05.004Search in Google Scholar
42. Soucek, P., Malmbeck, R., Mendes, E., Nourry, C., Sedmidubsky, D., Glatz, J. P.: Study of thermodynamic properties of Np-Al alloys in molten LiCl-KCl eutectic. J. Nucl. Mater. 394, 26 (2009).10.1016/j.jnucmat.2009.08.003Search in Google Scholar
43. Mendes, E., Malmbeck, R., Nourry, C., Soucek, P., Glatz, J. P.: On the electrochemical formation of Pu-Al alloys in molten LiCl-KCl. J. Nucl. Mater. 420, 424 (2012).10.1016/j.jnucmat.2011.09.017Search in Google Scholar
44. Soucek, P., Malmbeck, R., Nourry, C., Glatz, J. P.: Pyrochemical Reprocessing of spent fuel by electrochemical techniques using solid aluminium cathodes. In: B. Raj, P. R. V. Rao, K. V. G. Kutty, U. K. Mudali (Eds.), Asian Nuclear Prospects 2010, vol. 7. Energy Procedia (2011), p. 396.10.1016/j.egypro.2011.06.052Search in Google Scholar
45. Liu, K., Liu, Y. L., Yuan, L. Y., Wang, L., Wang, L., Li, Z. J., Chai, Z. F., Shi, W. Q.: Thermodynamic and electrochemical properties of holmium and HoxAly intermetallic compounds in the LiCl-KCl eutectic. Electrochim. Acta 174, 15 (2015).10.1016/j.electacta.2015.05.161Search in Google Scholar
46. Liu, K., Liu, Y. L., Yuan, L. Y., He, H., Yang, Z. Y., Zhao, X. L., Chai, Z. F., Shi, W. Q.: Electroextraction of samarium from Sm2O3 in chloride melts. Electrochim. Acta 129, 401 (2014).10.1016/j.electacta.2014.02.136Search in Google Scholar
47. Liu, K., Liu, Y. L., Yuan, L. Y., Zhao, X. L., Chai, Z. F., Shi, W. Q.: Electroextraction of gadolinium from Gd2O3 in LiCl-KCl-AlCl3 molten salts. Electrochim. Acta 109, 732 (2013).10.1016/j.electacta.2013.07.084Search in Google Scholar
48. Liu, K., Liu, Y. L., Yuan, L. Y., Zhao, X. L., He, H., Ye, G. A., Chai, Z. F., Shi, W. Q.: Electrochemical formation of erbium-aluminum alloys from erbia in the chloride melts. Electrochim. Acta 116, 434 (2014).10.1016/j.electacta.2013.11.093Search in Google Scholar
49. Liu, K., Yuan, L. Y., Liu, Y. L., Zhao, X. L., He, H., Ye, G. A., Chai, Z. F., Shi, W. Q.: Electrochemical reactions of the Th4+/Th couple on the tungsten, aluminum and bismuth electrodes in chloride molten salt. Electrochim. Acta 130, 650 (2014).10.1016/j.electacta.2014.03.085Search in Google Scholar
50. Liu, Y. L., Liu, K., Luo, L. X., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Direct separation of uranium from lanthanides (La, Nd, Ce, Sm) in oxide mixture in LiCl-KCl eutectic melt. Electrochim. Acta 275, 100 (2018).10.1016/j.electacta.2018.04.140Search in Google Scholar
51. Liu, Y.-L., Yan, Y. D., Han, W., Zhang, M. L., Yuan, L. Y., Liu, K., Ye, G. A., He, H., Chai, Z. F., Shi, W. Q.: Extraction of thorium from LiCl-KCl molten salts by forming Al-Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels. RSC Adv. 3, 23539 (2013).10.1039/c3ra43292kSearch in Google Scholar
52. Liu, Y. L., Ye, G. A., Yuan, L. Y., Liu, K., Feng, Y. X., Li, Z. J., Chai, Z. F., Shi, W. Q.: Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic. Electrochim. Acta 158, 277 (2015).10.1016/j.electacta.2015.01.128Search in Google Scholar
53. Luo, L. X., Liu, Y. L., Liu, N., Liu, K., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Electroreduction-based Tb extraction from Tb4O7 on different substrates: understanding Al-Tb alloy formation mechanism in LiCl-KCl melt. RSC Adv. 5, 69134 (2015).10.1039/C5RA11708ASearch in Google Scholar
54. Wang, L., Liu, Y. L., Liu, K., Tang, S. L., Yuan, L. Y., Su, L. L., Chai, Z. F., Shi, W. Q.: Electrochemical extraction of cerium from CeO2 assisted by AlCl3 in molten LiCI-KCI. Electrochim. Acta 147, 385 (2014).10.1016/j.electacta.2014.08.113Search in Google Scholar
55. Li, B., Liu, K., Pang, J. W., Yuan, L. Y., Liu, Y. L., Lin, M. Z.: Electrochemical properties of gadolinium on liquid gallium electrode in LiCI-KCI eutectic. J. Rare Earth 36, 656 (2018).10.1016/j.jre.2017.11.014Search in Google Scholar
56. Liu, K., Liu, Y. L., Chai, Z. F., Shi, W. Q.: Evaluation of the electroextractions of Ce and Nd from LiCl-KCl molten salt using liquid Ga electrode. J. Electrochem. Soc. 164, D169 (2017).10.1149/2.0511704jesSearch in Google Scholar
57. Pang, J. W., Liu, K., Liu, Y. L., Nie, C. M., Luo, L. X., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Electrochemical properties of lanthanum on the liquid gallium electrode in LiCl-KCl Eutectic. J. Electrochem. Soc. 163, D750 (2016).10.1149/2.0611614jesSearch in Google Scholar
58. Novoselova, A., Smolenski, V., Volkovich, V. A., Ivanov, A. B., Osipenko, A., Griffiths, T. R.: Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system. J. Nucl. Mater. 466, 373 (2015).10.1016/j.jnucmat.2015.08.010Search in Google Scholar
59. Smolenski, V., Novoselova, A., Osipenko, A., Maershin, A.: Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Electrochim. Acta 145, 81 (2014).10.1016/j.electacta.2014.08.081Search in Google Scholar
60. Smolenski, V., Novoselova, A., Osipenko, A., Kormilitsyn, M., Luk’yanova, Y.: Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases. Electrochim. Acta 133, 354 (2014).10.1016/j.electacta.2014.04.042Search in Google Scholar
61. Soucek, P., Malmbeck, R., Mendes, E., Nourry, C., Glatz, J. P.: Exhaustive electrolysis for recovery of actinides from molten LiCl-KCl using solid aluminium cathodes. J. Radioanal. Nucl. Chem. 286, 823 (2010).10.1007/s10967-010-0739-6Search in Google Scholar
62. Myerson, A. Handbook of industrial crystallization. Butterworth-Heinemann, Oxford, UK (2001).Search in Google Scholar
63. Polinski, M. J., Grant, D. J., Wang, S., Alekseev, E. V., Cross, J. N., Villa, E. M., Depmeier, W., Gagliardi, L., Albrecht-Schmitt, T. E.: Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682 (2012).10.1021/ja303804rSearch in Google Scholar PubMed
64. Polinski, M. J., Wang, S., Alekseev, E. V., Depmeier, W., Liu, G., Haire, R. G., Albrecht-Schmitt, T. E.: Curium(III) borate shows coordination environments of both plutonium(III) and americium(III) borates. Angew. Chem. Int. Ed. 51, 1869 (2012).10.1002/anie.201107956Search in Google Scholar PubMed
65. Cary, S. K., Vasiliu, M., Baumbach, R. E., Stritzinger, J. T., Green, T. D., Diefenbach, K., Cross, J. N., Knappenberger, K. L., Liu, G., Silver, M. A., DePrince, A. E., Polinski, M. J., Van Cleve, S. M., House, J. H., Kikugawa, N., Gallagher, A., Arico, A. A., Dixon, D. A., Albrecht-Schmitt, T. E.: Emergence of californium as the second transitional element in the actinide series. Nat. Commun. 6, 6825 (2015).10.1038/ncomms7827Search in Google Scholar PubMed PubMed Central
66. Silver, M. A., Cary, S. K., Johnson, J. A., Baumbach, R. E., Arico, A. A., Luckey, M., Urban, M., Wang, J. C., Polinski, M. J., Chemey, A., Liu, G., Chen, K.-W., Van Cleve, S. M., Marsh, M. L., Eaton, T. M., van de Burgt, L. J., Gray, A. L., Hobart, D. E., Hanson, K., Maron, L., Gendron, F., Autschbach, J., Speldrich, M., Koegerler, P., Yang, P., Braley, J., Albrecht-Schmitt, T. E.: Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science 353, (2016).10.1126/science.aaf3762Search in Google Scholar PubMed
67. Polinski, M. J., Wang, S., Alekseev, E. V., Depmeier, W., Albrecht-Schmitt, T. E.: Bonding changes in plutonium(III) and americium(III) Borates. Angew. Chem. Int. Ed. 50, 8891 (2011).10.1002/anie.201103502Search in Google Scholar PubMed
68. Silver, M. A., Albrecht-Schmitt, T. E.: Evaluation of f-element borate chemistry. Coord. Chem. Rev. 323, 36 (2016).10.1016/j.ccr.2016.02.015Search in Google Scholar
69. Yin, X. M., Wang, Y. X., Bai, X. J., Wang, Y. M., Chen, L. H., Xiao, C. L., Diwu, J., Du, S. Y., Chai, Z. F., Albrecht-Schmitt, T. E., Wang, S. A.: Rare earth separations by selective borate crystallization. Nat. Commun. 8, 14438 (2017).10.1038/ncomms14438Search in Google Scholar PubMed PubMed Central
70. Krishnamurthy, N., Gupta, C. K. Extractive Metallurgy of Rare Earths. CRC Press, Boca Raton, FL, USA (2015).10.1201/b19055Search in Google Scholar
71. Wang, Y., Lu, H., Xing, D., Tao, D., Bai, X., Cai, Y., Yin, X., Chen, L., Juan, D., Du, S., Zhou, R., Chai, Z., Albrecht-Schmitt, T. E., Ning, L., Shuao, W.: Facile and efficient decontamination of thorium from rare earths based on selective selenite crystallization. Inorg. Chem. 57, 1880 (2018).10.1021/acs.inorgchem.7b02681Search in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications
Articles in the same Issue
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications