Startseite Naturwissenschaften Retention behavior of anionic radionuclides using metal hydroxide sludge
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Retention behavior of anionic radionuclides using metal hydroxide sludge

  • Mostafa M. Hamed EMAIL logo , I. M. Ahmed und M. Holiel
Veröffentlicht/Copyright: 28. März 2019

Abstract

With the speedy growth of nuclear power production, the removal and disposal of radioactive nuclides such as 129I, 99Tc, 79Se, 36Cl, 93Mo, and 137Cs become major environmental security issues. Retention of these radionuclides, especially anionic species such as 129I (t1/2 1.7 × 107 years), 93Mo (t1/2 4 × 103 years) and 79Se (t1/2 3.27 × 105 years) has been challenging. 129I, 93Mo and 79Se bind very weakly to most sorbents and deposits. This study has examined the sorption potential of Metal hydroxide sludge (MHS) for 125I (t1/2 60.2 days), 99Mo (t1/2 2.75 days) and 75Se (t1/2 120 days) as a surrogate for 129I, 93Mo and 79Se, respectively. MHS has been characterized by different techniques and the factors affecting the sorption processes were investigated. The experimental data were analyzed using kinetic models and thermodynamic parameters. The results showed that the kinetics of sorption of 125I and 99Mo on MHS proceeds according to the pseudo-first-order, on the contrary of 75Se sorption follows pseudo second-order kinetic model. The maximum sorption capacity of MHS was found to be 51.2 mg/g, 46.5 mg/g and 40.2 mg/g for 125I, 99Mo and 75Se, respectively. It can be concluded that, in the case of release of anionic radionuclide species to the surroundings the MHS could act as a succeeded and economical sorbent material for retention of different anionic radionuclides such as 133, 129I, 79Se, 36Cl, 93, 99Mo, and 99Tc. To avoid the release of such anionic species from the stored nuclear wastes to the environment.

References

1. Hamed, M. M., Aly, M. I., Nayl, A. A.: Kinetics and thermodynamics studies of cobalt, strontium and cesium sorption on marble from aqueous solution. Chem. Ecology. 32, 68 (2016).10.1080/02757540.2015.1112379Suche in Google Scholar

2. Holiel, M., Hamed, M. M., Ahmed, I. M.: Sorption behavior of cesium, cobalt and europium radionuclides onto hydroxyl magnesium silicate. Radiochim. Acta 104, 873 (2016).10.1515/ract-2016-2579Suche in Google Scholar

3. El-Said, H., Ramadan, H., Abbas, M., El-Hashash, M.: 99Mo/99mTc radioisotope generator based on adsorption of 99Mo (VI) on cerium (IV) molybdate column matrix. Radiochim. Acta 106, 991 (2018).10.1515/ract-2018-0002Suche in Google Scholar

4. Hamed, M. M., Holiel, M., El-Aryan, Y. F.: Removal of selenium and iodine radionuclides from waste solutions using synthetic inorganic ion exchanger. J. Mol. Liq. 242, 722 (2017).10.1016/j.molliq.2017.07.035Suche in Google Scholar

5. Duc, M., Lefevre, G., Fedoroff, M., Jeanjean, J., Rouchaud, J. C., Monteil-Rivera, F., Dumonceau, J., Milonjic, S.: Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J. Environ. Radioact. 70, 61 (2003).10.1016/S0265-931X(03)00125-5Suche in Google Scholar PubMed

6. Lefvre, G., Walcarius, A., Ehrhardt, J., Bessiere, J.: Sorption of iodide on cuprite (Cu2O). J. Langmuir 16, 4519 (2000).10.1021/la9903999Suche in Google Scholar

7. Chapman, K. W., Chupas, P. J., Nenoff, T. M.: Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J. Am. Chem. Soc. 13, 8897 (2010).10.1021/ja103110ySuche in Google Scholar PubMed

8. Hughes, J. T., Sava, D. F., Nenoff, T. M., Navrotsky, A.: Thermochemical evidence for strong iodine chemisorption by ZIF-8. J. Am. Chem. Soc. 135, 16256 (2013).10.1021/ja406081rSuche in Google Scholar PubMed

9. Riley, B. J., Chun, J., Um, W., Lepry, W. C., Matyas, J., Olszta, M. J., Li, X., Polychronopoulou, K., Kanatzidis, M. G.: Chalcogen-based aerogels as sorbents for radionuclide remediation. Environ. Sci. Technol. 47, 7540 (2013).10.1021/es400595zSuche in Google Scholar PubMed

10. Drever, J. I.: The Geochemistry of Natural Waters: Surface and Groundwater Environments, Prentice Hall, Up Saddle River, NJ 07458, 3rd edition, (2002).Suche in Google Scholar

11. Svecova, L., Dossot, M., Cremel, S., Simonnot, M. O., Sardin, M., Humbert, B., Den Auwer, C., Michot, L. J.: Sorption of selenium oxyanions on TiO2 (rutile) studied by batch or column experiments and spectroscopic methods. J. Hazard. Mater. 189, 764 (2011).10.1016/j.jhazmat.2011.02.090Suche in Google Scholar PubMed

12. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S.: Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Eng. J. 215–216, 522 (2013).10.1016/j.cej.2012.11.054Suche in Google Scholar

13. Zhang, N., Lin, L. S., Gang, D.: Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res. 42, 3809 (2008).10.1016/j.watres.2008.07.025Suche in Google Scholar PubMed

14. Peak, D.: Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J. Colloid Interface Sci. 303, 337 (2006).10.1016/j.jcis.2006.08.014Suche in Google Scholar PubMed

15. Wijnja, H., Schulthess, C. P.: Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr) oxide surfaces. J. Colloid Interface Sci. 229, 286 (2000).10.1006/jcis.2000.6960Suche in Google Scholar PubMed

16. Baur, I., Johnson, C. A.: Sorption of selenite and selenate to cement minerals Environ. Sci. Technol. 37, 3442 (2003).10.1021/es020148dSuche in Google Scholar PubMed

17. Nakayama, M., Sato, A., Nakagawa, K.: Selective sorption of iodide onto organo-MnO2 film and its electrochemical desorption. Anal. Chim. Acta 877, 64 (2015).10.1016/j.aca.2015.03.041Suche in Google Scholar PubMed

18. Hoskins, J. S., Karanfil, T., Serkiz, S. M.: Removal and sequestration of iodide using silver-impregnated activated carbon. Environ. Sci. Technol. 36, 784 (2002).10.1021/es010972mSuche in Google Scholar PubMed

19. Warchol, J., Misaelides, P., Petrus, R., Zamboulis, D.: Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J. Hazard. Mater. 137, 1410 (2006).10.1016/j.jhazmat.2006.04.028Suche in Google Scholar PubMed

20. Theiss, F. L., Couperthwaite, S. J., Ayoko, G. A., Frost, R. L.: A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. J. Colloid Interface Sci. 417, 356 (2014).10.1016/j.jcis.2013.11.040Suche in Google Scholar PubMed

21. Bostick, B. C., Fendorf, S., Helz, G. R.: Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). Environ. Sci. Technol. 37, 285 (2003).10.1021/es0257467Suche in Google Scholar PubMed

22. Xu, N., Christodoulatos, C., Braida, W.: Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions. Chemosphere 62, 1726 (2006).10.1016/j.chemosphere.2005.06.025Suche in Google Scholar PubMed

23. Gustafsson, J. P.: Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 200, 105 (2003).10.1016/S0009-2541(03)00161-XSuche in Google Scholar

24. Wu, C. H., Lo, S. L., Lin, C. F.: Competitive adsorption of molybdate, chromate sulfate, selenate, and selenite on – Al2O3. Colloids Surf. A 166, 251 (2000).10.1016/S0927-7757(99)00404-5Suche in Google Scholar

25. Wu, C. H., Lo, S. L., Lin, C. F., Kuo, C.-Y.: Modeling competitive adsorption of molybdate, sulfate, and selenate on –Al2O3 by the triple-layer model. J. Colloid Interface Sci. 233, 259 (2001).10.1006/jcis.2000.7223Suche in Google Scholar

26. Galamboš, M., Rosskopfová, O., Kufčáková, J., Rajec, P.: Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. J. Radioanal. Nucl. Chem. 288, 765 (2011).10.1007/s10967-011-0987-0Suche in Google Scholar

27. Galamboš, M., Suchánek, P., Rosskopfová, O.: Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J. Radioanal. Nucl. Chem. 293, 613 (2012).10.1007/s10967-012-1717-ySuche in Google Scholar

28. Hamed, M. M., Hassan, R. S., Metwally, S. S.: Retardation behavior of alum industrial waste for cationicand anionic radionuclides. Process Saf. Environ. 124, 31 (2019).10.1016/j.psep.2019.01.033Suche in Google Scholar

29. Staurt, B.: Modern Infrared Spectroscopy, Wiley, West Sussex (1996).Suche in Google Scholar

30. Saiah, F. B. D., Su, B. L., Bettahar, N.: Nickel–iron layered double hydroxide (LDH): textural properties upon hydrothermal treatments and application on dye sorption. J. Hazard. Mater. 165, 206 (2009).10.1016/j.jhazmat.2008.09.125Suche in Google Scholar PubMed

31. Pascuta, P., Vladescu, A., Borodi, G., Culea, E., Tetean, R.: Structural and magnetic properties of zinc ferrite incorporated in amorphous matrix. Ceram Int. 37, 3343 (2011).10.1016/j.ceramint.2011.05.134Suche in Google Scholar

32. Weng, C. H., Lin, D. F., Chiang, P. C.: Utilization of sludge as brick materials. AER 7, 679 (2003).10.1016/S1093-0191(02)00037-0Suche in Google Scholar

33. Lin, D. F., Weng, C. H.: Use of sewage sludge ash as brick material. J. Environ. Eng. 127, 922 (2001).10.1061/(ASCE)0733-9372(2001)127:10(922)Suche in Google Scholar

34. Andrault, D., Bolfan-Casanova, N.: High-pressure phase transformation in the MgF2O4 and Fe2O3-MgSiO3 systems. Phys. Chem. Miner. 28, 211 (2001).10.1007/s002690000149Suche in Google Scholar

35. Bitenc, M., Marinsek, M., Crnjak Orel, Z.: Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles. J. Eur. Ceram. Soc. 28, 2915 (2008).10.1016/j.jeurceramsoc.2008.05.003Suche in Google Scholar

36. Taglieri, G., Mondelli, C., Daniele, V., Pusceddu, E., Trapananti, A.: Synthesis and X-ray diffraction analyses of calcium hydroxide nanoparticles in aqueous suspension. AMPC 3, 108 (2013).10.4236/ampc.2013.31A013Suche in Google Scholar

37. Zhang, X., Ma, J, Lu, X.: High efficient removal of molybdenum from water by Fe2(SO4)3. Effects of pH and affecting factors in the presence of co-existing background constituents. J. Hazard. Mater. 300, 823 (2015).10.1016/j.jhazmat.2015.08.026Suche in Google Scholar PubMed

38. Netpradita, S., Thiravetyanb, P., Towprayoon, S.: Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Res. 37, 763 (2003).10.1016/S0043-1354(02)00375-5Suche in Google Scholar PubMed

39. Jordan, N., Foerstendorf, H., Wei, S.: Sorption of selenium (VI) onto anatase: Macroscopic and microscopic characterization. Geochim. Cosmochim. Acta 75, 1519 (2011).10.1016/j.gca.2011.01.012Suche in Google Scholar

40. Attallah, M. F., Ahmed, I. M., Hamed, M. M.: Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent. Environ. Sci. Pollut. Res. 20, 1106 (2013).10.1007/s11356-012-0947-4Suche in Google Scholar PubMed

41. Song, S., Zhang, S., Huang, S., Zhang, R., Yin, L., Hu, Y., Wen, T., Zhuang, L., Hu, B., Wang, X.: A novel multi-shelled Fe3O4@MnOx hollow microspheres for immobilizing U(VI) and Eu(III). Chem. Eng. J. 355, 697 (2019).10.1016/j.cej.2018.08.205Suche in Google Scholar

42. El-Gammal B., Metwally, S. S., Aly, H. F., Abo-El-Enein, S. A.: Verification of double-shell model for sorption of cesium, cobalt, and europium ions on poly-acrylonitrile-based Ce(IV) phosphate from aqueous solutions. Desalin. Water Treat. 46, 124 (2012).10.1080/19443994.2012.677412Suche in Google Scholar

43. Hamed, M. M., Ali, M. M. S., Holiel, M.: Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+‏154Eu: Equilibrium, kinetic and thermodynamic studies. J. Environ. Radioact. 164, 113 (2016).10.1016/j.jenvrad.2016.07.005Suche in Google Scholar PubMed

44. Rizk, S. E., Hamed, M. M.: Batch sorption of iron complex dye, naphthol green B, from wastewater on charcoal, kaolinite, and tafla. Desalin. Water Treat. 56, 1536 (2015).10.1080/19443994.2014.954004Suche in Google Scholar

45. Rizk, S. E., Hamed, M. M., Nayl, A. A.: Adsorption kinetics and modeling of gadolinium and cobalt ions sorption by an ion-exchange resin. Particul. Sci. Technol. 34, 716 (2016).10.1080/02726351.2015.1112328Suche in Google Scholar

Received: 2018-12-30
Accepted: 2019-02-24
Published Online: 2019-03-28
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-0010/html?lang=de
Button zum nach oben scrollen