Home Physical Sciences Radiochemical aspects of alpha emitting radionuclides for medical application
Article
Licensed
Unlicensed Requires Authentication

Radiochemical aspects of alpha emitting radionuclides for medical application

  • Maryline G. Ferrier EMAIL logo , Valery Radchenko and D. Scott Wilbur
Published/Copyright: May 22, 2019

Abstract

The use of α-emitting radionuclides in targeted alpha therapy (TAT) holds great potential for treatment of human diseases, such as cancer, due to the short pathlength and high potency of the α particle, which can localize damage to targeted cells while minimizing effects to healthy surrounding tissues. In this review several potential α-emitting radionuclides having emission properties applicable to TAT are discussed from a radiochemical point of view. Overviews of production, radiochemical separation and chelation aspects relative to developing TAT radiopharmaceuticals are provided for the α-emitting radionuclides (and their generator systems) 211At, 224Ra/212Pb/212Bi, 225Ac/213Bi, 227Th/223Ra, 230U/226Th, 149Tb and 255Fm.

References

1. Huclier-Markai, S., Alliot, C., Varmenot, N., Cutler, C. S., Barbet, J.: Alpha-emitters for immuno-therapy: a review of recent developments from chemistry to clinics. Curr. Top. Med. Chem. 23, 2642 (2012).10.2174/1568026611212230002Search in Google Scholar PubMed

2. McDevitt, M. R., Sgouros, G., Sofou, S.: Targeted and nontargeted α-particle therapies. Annu. Rev. Biomed. Eng. 20, 73 (2018).10.1146/annurev-bioeng-062117-120931Search in Google Scholar PubMed PubMed Central

3. Lacoeuille, F., Arlicot, N., Faivre-Chauvet, A.: Targeted alpha and beta radiotherapy: an overview of radiopharmaceutical and clinical aspects. Med. Nucl. 42, 32 (2018).10.1016/j.mednuc.2017.12.002Search in Google Scholar

4. Makvandi, M., Dupis, E., Engle, J. W., Nortier, F. M., Fassbender, M. E., Simon, S., Birnbaum, E. R., Atcher, R. W., John, K. D., Rixe, O., Norenberg, J. P.: Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations. Target. Oncol. 13, 189 (2018).10.1007/s11523-018-0550-9Search in Google Scholar PubMed

5. Marcu, L., Bezak, E., Allen, B. J.: Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hemat. 123, 7 (2018).10.1016/j.critrevonc.2018.01.001Search in Google Scholar PubMed

6. Cornelissen, B., Vallis, K. A.: Targeting the nucleus: an overview of auger-electron radionuclide therapy. Curr. Drug Discov. Technol. 7, 263 (2010).10.2174/157016310793360657Search in Google Scholar PubMed

7. Larson, S. M., Carrasquillo, J. A., Cheung, N.-K. V., Press, O. W.: Radioimmunotherapy of human tumours. Nat. Rev. Cancer 15, 347 (2015).10.1038/nrc3925Search in Google Scholar PubMed PubMed Central

8. Jurcic, J. G., et al.: Targeted α particle immunotherapy for myeloid leukemia. Blood 100, 1233 (2002).10.1182/blood.V100.4.1233.h81602001233_1233_1239Search in Google Scholar

9. Poty, S., Francesconi, L. C., McDevitt, M. R., Morris, M. J., Lewis, J. S.: α-Emitters for radiotherapy: from basic radiochemistry to clinical studies – part 2. J. Nucl. Med. 59, 1020 (2018).10.2967/jnumed.117.204651Search in Google Scholar PubMed PubMed Central

10. Martins, C. D., Kramer-Marek, G., Oyen, W. J. G.: Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin. Drug Deliv. 15, 185 (2018).10.1080/17425247.2018.1378180Search in Google Scholar PubMed

11. Kozempel, J., Mokhodoeva, O., Vlk, M.: Progress in targeted alpha-particle therapy. what we learned about recoils release from in vivo generators. Molecules 23, 581 (2018).10.3390/molecules23030581Search in Google Scholar PubMed PubMed Central

12. Wadas, T. J., Pandya, D. N., Solingapuram Sai, K. K., Mintz, A.: Molecular targeted alpha-particle therapy for oncologic applications. AJR Am. J. Roentgenol. 203, 253 (2014).10.2214/AJR.14.12554Search in Google Scholar PubMed PubMed Central

13. Elgqvist, J., Frost, S., Pouget, J. P., Albertsson, P.: The potential and hurdles of targeted alpha therapy – clinical trials and beyond. Front. Oncol. 3, 324/1 (2014).10.3389/fonc.2013.00324Search in Google Scholar PubMed PubMed Central

14. Wilbur, D. S.: Chemical and radiochemical considerations in radiolabeling with α-emitting radionuclides. Curr. Radiopharm. 4, 214 (2011).10.2174/1874471011104030214Search in Google Scholar PubMed

15. Birnbaum, E. R., Fassbender, M. E., Ferrier, M. G., John, K. D., Mastren, T.: Actinides in Medicine, Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd. (2018), p. 1.10.1002/9781119951438.eibc2563Search in Google Scholar

16. Baum, R. P.: Therapeutic Nuclear Medicine (2014), Springer, Berlin, Heidelberg.10.1007/978-3-540-36719-2Search in Google Scholar

17. Guseva, L. I.: Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine. Radiochemistry 56, 451 (2014).10.1134/S1066362214050014Search in Google Scholar

18. Price, E. W., Orvig, C.: Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 43, 260 (2014).10.1039/C3CS60304KSearch in Google Scholar PubMed

19. Brechbiel, M. W.: Bifunctional chelates for metal nuclides. Q. J. Nucl. Med. Mol. Imaging 52, 166 (2008).Search in Google Scholar

20. Tornesello, A. L., Buonaguro, L., Tornesello, M. L., Buonaguro, F. M.: New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules 22, 1282_1 (2017).10.3390/molecules22081282Search in Google Scholar PubMed PubMed Central

21. Cutler, C. S., Hennkens, H. M., Sisay, N., Huclier-Markai, S., Jurisson, S. S.: Radiometals for combined imaging and therapy. Chem. Rev. 113, 858 (2013).10.1021/cr3003104Search in Google Scholar PubMed

22. Jamous, M., Haberkorn, U., Mier, W.: Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules 18, 3379 (2013).10.3390/molecules18033379Search in Google Scholar PubMed PubMed Central

23. Dekempeneer, Y., Keyaerts, M., Krasniqi, A., Puttemans, J., Muyldermans, S., Lahoutte, T., D’Huyvetter, M., Devoogdt, N.: Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther. 16, 1035 (2016).10.1080/14712598.2016.1185412Search in Google Scholar PubMed PubMed Central

24. Liko, F., Hindre, F., Fernandez-Megia, E.: Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 17, 3103 (2016).10.1021/acs.biomac.6b00929Search in Google Scholar PubMed

25. National Nuclear Data Center. Brookhaven National Laboratory, 1994.Search in Google Scholar

26. Meyer, G. J.: Astatine. J. Labelled Comp. Radiopharm. 61, 154 (2018).10.1002/jlcr.3573Search in Google Scholar PubMed

27. Lahiri, S., Maiti, M.: Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides. Radiochim. Acta 100, 85 (2012).10.1524/ract.2011.1888Search in Google Scholar

28. Hermanne, A., Tárkányi, F., Takács, S., Szücs, Z., Shubin, Y. N., Dityuk, A. I.: Experimental study of the cross-sections of alpha-particle induced reactions on 209Bi. Appl. Radiat. Isotopes 63, 1 (2005).10.1016/j.apradiso.2005.01.015Search in Google Scholar PubMed

29. Zalutsky, M. R., Pruszynski, M.: Astatine-211: production and availability. Curr. Radiopharm. 4, 177 (2011).10.2174/1874471011104030177Search in Google Scholar PubMed PubMed Central

30. Guérard, F., Gestin, J. F., Brechbiel, M. W.: Production of [211At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother. Radiopharm. 28, 1 (2013).10.1089/cbr.2012.1292Search in Google Scholar PubMed PubMed Central

31. Gagnon, K., Risler, R., Pal, S., Hamlin, D., Orzechowski, J., Pavan, R., Zeisler, S., Wilbur, D. S.: Design and evaluation of an external high-current target for production of 211At. J. Labelled Comp. Radiopharm. 55, 436 (2012).10.1002/jlcr.2968Search in Google Scholar

32. Qaim, S. M., Stöcklin, G.: Production of some medically important short-lived neutron-deficient radioisotopes of halogens. Radiochim. Acta 34, 25 (1983).10.1524/ract.1983.34.12.25Search in Google Scholar

33. Crawford, J. R., Kunz, P., Yang, H., Schaffer, P., Ruth, T. J.: 211Rn/211At and 209At production with intense mass separated Fr ion beams for preclinical 211At-based α-therapy research. Appl. Radiat. Isotopes 122, 222 (2017).10.1016/j.apradiso.2017.01.035Search in Google Scholar PubMed

34. Lindegren, S., Bäck, T., Jensen, H. J.: Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl. Radiat. Isotopes 55, 157 (2001).10.1016/S0969-8043(01)00044-6Search in Google Scholar

35. Aneheim, E., Albertsson, P., Bäck, T., Jensen, H., Palm, S., Lindegren, S.: Automated astatination of biomolecules – a stepping stone towards multicenter clinical trials. Sci. Rep. 5, 12025_1 (2015).10.1038/srep12025Search in Google Scholar PubMed PubMed Central

36. O’Hara, M. J., Krzysko, A. J., Niver, C. M., Morrison, S. S., Owsley, S. L., Jr., Hamlin, D. K., Dorman, E. F., Scott Wilbur, D.: An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211. Appl. Radiat. Isotopes 122, 202 (2017).10.1016/j.apradiso.2017.02.001Search in Google Scholar PubMed

37. Balkin, E. R., Hamlin, D. K., Gagnon, K., Chyan, M.-K., Pal, S., Watanabe, S., Wilbur, D. S.: Evaluation of a wet chemistry method for isolation of cyclotron produced [211At]astatine. Appl. Sci. 3, 636 (2013).10.3390/app3030636Search in Google Scholar

38. Zalutsky, M., Vaidyanathan, G.: Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr. Pharm. Des. 6, 1433 (2000).10.2174/1381612003399275Search in Google Scholar PubMed

39. Wilbur, D. S.: [211At]Astatine-labeled compound stability: issues with released [211At]astatide and development of labeling reagents to increase stability. Curr. Radiopharm. 1, 144 (2008).10.2174/1874471010801030144Search in Google Scholar

40. Couturier, O., Supiot, S., Degraef-Mougin, M., Faivre-Chauvet, A., Carlier, T., Chatal, J. F., Davodeau, F., Cherel, M.: Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. I. 32, 601 (2005).10.1007/s00259-005-1803-2Search in Google Scholar PubMed

41. Wilbur, D. S., Hadley, S. W., Hylarides, M. D., Abrams, P. G., Beaumier, P. A., Morgan, A. C., Reno, J. M., Fritzberg, A. R.: Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J. Nucl. Med. 30, 216 (1989).Search in Google Scholar

42. Wilbur, D. S.: Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconj. Chem. 3, 433 (1992).10.1021/bc00018a001Search in Google Scholar PubMed

43. Zalutsky, M. R., Bigner, D. D.: Radioimmunotherapy with α-particle emitting radioimmunoconjugates. Acta Oncol. 35, 373 (1996).10.3109/02841869609101654Search in Google Scholar PubMed

44. Wilbur, D. S., Chyan, M. K., Nakamae, H., Chen, Y., Hamlin, D. K., Santos, E. B., Kornblit, B. T., Sandmaier, B. M.: Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2-) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2-) reagent via lysine amines. Bioconj. Chem. 23, 409 (2012).10.1021/bc200401bSearch in Google Scholar PubMed PubMed Central

45. Zalutsky, M. R., Reardon, D. A., Akabani, G., Coleman, R. E., Friedman, A. H., Friedman, H. S., McLendon, R. E., Wong, T. Z., Bigner, D. D.: Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med. 49, 30 (2008).10.2967/jnumed.107.046938Search in Google Scholar

46. Cederkrantz, E., Andersson, H., Bernhardt, P., Bäck, T., Hultborn, R., Jacobsson, L., Jensen, H., Lindegren, S., Ljungberg, M., Magnander, T., Palm, S., Albertsson, P.: Absorbed doses and risk estimates of 211At-MX35 F(ab′)2 in intraperitoneal therapy of ovarian cancer patients. Int. J. Radiat. Oncol. 93, 569 (2015).10.1016/j.ijrobp.2015.07.005Search in Google Scholar

47. Reardon, D. A., Zalutsky, M. R., Bigner, D. D.: Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev. Anticancer 7, 675 (2007).10.1586/14737140.7.5.675Search in Google Scholar

48. Andersson, H., Cederkrantz, E., Bäck, T., Divgi, C., Elgqvist, J., Himmelman, J., Horvath, G., Jacobsson, L., Jensen, H., Lindegren, S., Palm, S., Hultborn, R.: Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab′)2 – a phase I study. J. Nucl. Med. 50, 1153 (2009).10.2967/jnumed.109.062604Search in Google Scholar

49. Li, Y., Hamlin, D. K., Chyan, M. K., Wong, R., Dorman, E. F., Emery, R. C., Woodle, D. R., Manger, R. L., Nartea, M., Kenoyer, A. L., Orozco, J. J., Green, D. J., Press, O. W., Storb, R., Sandmaier, B. M., Wilbur, D. S.: cGMP production of astatine-211-labeled anti-CD45 antibodies for use in allogeneic hematopoietic cell transplantation for treatment of advanced hematopoietic malignancies. PLoS One 13, e0205135 (2018).10.1371/journal.pone.0205135Search in Google Scholar

50. Atcher, R. W., Friedman, A. M., Hines, J. J.: An improved generator for the production of 212Pb and 212Bi from 224Ra. Appl. Radiat. Isotopes 39, 283 (1988).10.1016/0883-2889(88)90016-0Search in Google Scholar

51. Hassfjell, S. P.: A 212Pb generator based on a 228Th source. Appl. Radiat. Isotopes 55, 433 (2001).10.1016/S0969-8043(00)00372-9Search in Google Scholar

52. Mirzadeh, S.: Generator-produced alpha-emitters. Appl. Radiat. Isotopes 49, 345 (1998).10.1016/S0969-8043(97)00175-9Search in Google Scholar

53. Westrom, S., Generalov, R., Bonsdorff, T. B., Larsen, R. H.: Preparation of 212Pb-labeled monoclonal antibody using a novel 224Ra-based generator solution. Nucl. Med. Biol. 51, 1 (2017).10.1016/j.nucmedbio.2017.04.005Search in Google Scholar PubMed

54. Despotopulos, J. D., Kmak, K. N., Moody, K. J., Shaughnessy, D. A.: Development of a 212Pb and 212Bi generator for homolog studies of flerovium and moscovium. J. Radioanal. Nucl. Chem. 317, 473 (2018).10.1007/s10967-018-5848-7Search in Google Scholar

55. Hassfjell, S., Brechbiel, M. W.: The development of the α-particle 212Bi and 213Bi and their decay chain related radionuclides, for therapeutic applications. Chem. Rev. 101, 2019 (2001).10.1021/cr000118ySearch in Google Scholar

56. Ruegg, C. L., Anderson-Berg, W. T., Brechbiel, M. W., Mirzadeh, S., Gansow, O. A., Strand, M.: Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res. 50, 4221 (1990).Search in Google Scholar

57. Junghans, R. P., Brechbiel, M. W., Mirzadeh, S., Raubitschek, A. A., Gansow, O. A., Waldmann, T. A.: Pharmacokinetics and bioactivity of 1,4,7,10-tetra-azacylododecane tetraacetic acid (DOTA)-bismuth-conjugated anti-tac antibody for α-emitter (212Bi) therapy. Cancer Res. 53, 5683 (1993).Search in Google Scholar

58. Kumar, K., Magerstädt, M., Gansow, O. A.: Lead(II) and bismuth(III) complexes of the polyazacycloalkane-N-acetic acids nota, dota and teta. J. Chem. Soc. Chem. Commun. 3, 145 (1989).10.1039/C39890000145Search in Google Scholar

59. Bartos, B., Lyczko, K., Kasperek, A., Krajewski, S., Bilewicz, A.: Search of ligands suitable for 212Pb/212Bi in vivo generators. J. Radioanal. Nucl. Chem. 295, 205 (2013).10.1007/s10967-012-2238-4Search in Google Scholar

60. Mirzadeh, S., Kumar, K., Gansow, O. A.: The chemical fate of 212Bi-DOTA formed by β decay of 212Pb(DOTA)2−. Radiochim. Acta 60, 1 (1993).10.1524/ract.1993.60.1.1Search in Google Scholar

61. Chappell, L. L., Dadachova, K., Milenic, D. E., Garmestani, K., Wu, C., Brechbiel, M. W.: Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl. Med. Biol. 27, 93 (2000).10.1016/S0969-8051(99)00086-4Search in Google Scholar

62. Confino, H., Hochman, I., Efrati, M., Schmidt, M., Umansky, V., Kelson, I., Keisari, Y.: Tumor ablation by intratumoral Ra-224-loaded wires induces anti-tumor immunity against experimental metastatic tumors. Cancer Immunol. Immunother. 64, 191 (2015).10.1007/s00262-014-1626-8Search in Google Scholar PubMed

63. Yong, K. J., Milenic, D. E., Baidoo, K. E., Brechbiel, M. W.: Cell killing mechanisms and impact on gene expression by gemcitabine and 212Pb-trastuzumab treatment in a disseminated i.p. tumor model. PLoS One 11, e0159904 (2016).10.1371/journal.pone.0159904Search in Google Scholar PubMed PubMed Central

64. Milenic, D. E., Baidoo, K. E., Kim, Y. S., Brechbiel, M. W.: Evaluation of cetuximab as a candidate for targeted alpha-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs 7, 255 (2015).10.4161/19420862.2014.985160Search in Google Scholar PubMed PubMed Central

65. Milenic, D. E., Baidoo, K. E., Brechbiel, M. W.: Bench to bedside: stability studies of GMP produced trastuzumab-TCMC in support of a clinical trial. Pharmaceuticals (Basel) 8, 435 (2015).10.3390/ph8030435Search in Google Scholar PubMed PubMed Central

66. Meredith, R. F., Torgue, J. J., Rozgaja, T. A., Banaga, E. P., Bunch, P. W., Alvarez, R. D., Straughn, J. M., Jr., Dobelbower, M. C., Lowy, A. M.: Safety and outcome measures of first-in-human intraperitoneal alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol. 41, 716 (2018).10.1097/COC.0000000000000353Search in Google Scholar PubMed PubMed Central

67. Kasten, B. B., Arend, R. C., Katre, A. A., Kim, H., Fan, J., Ferrone, S., Zinn, K. R., Buchsbaum, D. J.: B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl. Med. Biol. 47, 23 (2017).10.1016/j.nucmedbio.2017.01.003Search in Google Scholar PubMed PubMed Central

68. Kasten, B. B., Gangrade, A., Kim, H., Fan, J., Ferrone, S., Ferrone, C. R., Zinn, K. R., Buchsbaum, D. J.: 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl. Med. Biol. 58, 67 (2018).10.1016/j.nucmedbio.2017.12.004Search in Google Scholar PubMed PubMed Central

69. Milenic, D. E., Kim, Y. S., Baidoo, K. E., Wong, K. J., Barkley, R., Delgado, J., Brechbiel, M. W.: Exploration of a F(ab′)2 fragment as the targeting agent of alpha-radiation therapy: a comparison of the therapeutic benefit of intraperitoneal and intravenous administered radioimmunotherapy. Cancer Biother. Radio. 33, 182 (2018).10.1089/cbr.2018.2434Search in Google Scholar

70. Morgenstern, A., Bruchertseifer, F., Apostolidis, C.: Bismuth-213 and actinium-225 generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotope. Curr. Radiopharm. 5, 221 (2012).10.2174/1874471011205030221Search in Google Scholar PubMed

71. Hogle, S., Boll, R. A., Murphy, K., Denton, D., Owens, A., Haverlock, T. J., Garland, M., Mirzadeh, S.: Reactor production of thorium-229. Appl. Radiat. Isotopes 114, 19 (2016).10.1016/j.apradiso.2016.05.002Search in Google Scholar PubMed

72. Kuznetsov, R. A., Butkalyuk, P. S., Tarasov, V. A., Baranov, A. Y., Butkalyuk, I. L., Romanov, E. G., Kypriyanov, V. N., Kazakova, E. V.: Yields of activation products in 226Ra irradiation in the high-flux SM reactor. Radiochemistry 54, 383 (2012).10.1134/S1066362212040121Search in Google Scholar

73. Engle, J. W.: The Production of Ac-225. Curr. Radiopharm. 11, 173 (2018).10.2174/1874471011666180418141357Search in Google Scholar PubMed

74. Engle, J. W., Weidner, J. W., Ballard, B. D., Fassbender, M. E., Hudston, L. A., Jackman, K. R., Dry, D. E., Wolfsberg, L. E., Bitteker, L. J., Ullmann, J. L., Gulley, M. S., Pillai, C., Goff, G., Birnbaum, E. R., John, K. D., Mashnik, S. G., NortierJohn, F. M., Weidner, W., Ballard, B. D., Fassbender, M. E., Hudston, L. A., Jackman, K. R., Dry, D. E., Wolfsberg, L. E., Bitteker, L. J., Ullmann, J. L., Gulley, M. S., Pillai, C., Goff, G., Birnbaum, E. R., John, K. D., Mashnik, S. G., Nortier, F. M.: Ac, La, and Ce radioimpurities in 225Ac produced in 40–200 MeV proton irradiations of thorium. Radiochim. Acta 102, 569 (2014).10.1515/ract-2013-2179Search in Google Scholar

75. Qaim, S. M.: Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 305, 233 (2015).10.1007/s10967-014-3923-2Search in Google Scholar

76. Zielinska, B., Apostolidis, C., Bruchertseifer, F., Morgenstern, A.: An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy. Solvent Extr. Ion Exc. 25, 339 (2007).10.1080/07366290701285108Search in Google Scholar

77. Filosofov, D. V., Rakhimov, A. V., Bozhikov, G. A., Karaivanov, D. V., Lebedev, N. A., Norseev, Y. V., Sadikov, I. I.: Isolation of radionuclides from thorium targets irradiated with 300-MeV protons. Radiochemistry 55, 410 (2013).10.1134/S1066362213040127Search in Google Scholar

78. Mastren, T., et al.: Simultaneous separation of actinium and radium isotopes from a proton irradiated thorium matrix. Sci. Rep. 7, 8216 (2017).10.1038/s41598-017-08506-9Search in Google Scholar

79. Radchenko, V., Mastren, T., Meyer, C. A. L., Ivanov, A. S., Bryantsev, V. S., Copping, R., Denton, D., Engle, J. W., Griswold, J. R., Murphy, K., Wilson, J. J., Owens, A., Wyant, L., Birnbaum, E. R., Fitzsimmons, J., Medvedev, D., Cutler, C. S., Mausner, L. F., Nortier, M. F., John, K. D., Mirzadeh, S., Fassbender, M. E.: Radiometric evaluation of diglycolamide resins for the chromatographic separation of actinium from fission product lanthanides. Talanta 175, 318 (2017).10.1016/j.talanta.2017.07.057Search in Google Scholar

80. Bray, L. A., Tingey, J. M., DesChane, J. R., Egorov, O. B., Tenforde, T. S., Wilbur, D. S., Hamlin, D. K., Pathare, P. M.: Development of a unique bismuth (Bi-213) automated generator for use in cancer therapy. Ind. Eng. Chem. Res. 39, 3189 (2000).10.1021/ie990068rSearch in Google Scholar

81. Guseva, L. I., Dogadkin, N. N.: Development of a tandem generator system 229Th/225Ac/213Bi for repeated production of short-lived α-emitting radionuclides. Radiochemistry 51, 169 (2009).10.1134/S1066362209020131Search in Google Scholar

82. Khalkin, V. A., Tsoupka-Sitnikoz, V. V., Zaitseva, N. G.: Radionuclides for radiotherapy. Actinium-225: properties, preparation, application. Radiochemistry 39, 483 (1997).Search in Google Scholar

83. Ferrier, M. G., Stein, B. W., Bone, S. E., Cary, S. K., Ditter, A. S., Kozimor, S. A., Lezama Pacheco, J. S., Mocko, V., Seidler, G. T.: The coordination chemistry of CmIII, AmIII, and AcIII in nitrate solutions: an actinide L3-edge EXAFS study. Chem. Sci. 9, 7078 (2018).10.1039/C8SC02270DSearch in Google Scholar

84. Robertson, A. K. H., Ramogida, C. F., Schaffer, P., Radchenko, V.: Development of 225Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr. Radiopharm. 11, 156 (2018).10.2174/1874471011666180416161908Search in Google Scholar

85. McDevitt, M. R., Ma, D., Simon, J., Frank, R. K., Scheinberg, D. A.: Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl. Radiat. Isotopes 57, 841 (2002).10.1016/S0969-8043(02)00167-7Search in Google Scholar

86. Jaggi, J. S., Kappel, B. J., McDevitt, M. R., Sgouros, G., Flombaum, C. D., Cabassa, C., Scheinberg, D. A.: Efforts to control the errant products of a targeted in vivo generator. Cancer Res. 65, 4888 (2005).10.1158/0008-5472.CAN-04-3096Search in Google Scholar PubMed

87. Kratochwil, C., Bruchertseifer, F., Giesel, F. L., Weis, M., Verburg, F. A., Mottaghy, F., Kopka, K., Apostolidis, C., Haberkorn, U., Morgenstern, A.: 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941 (2016).10.2967/jnumed.116.178673Search in Google Scholar PubMed

88. Chappell, L. L., Deal, K. A., Dadachova, E., Brechbiel, M. W.: Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for 225Ac radioimmunotherapy applications. Bioconj. Chem. 11, 510 (2000).10.1021/bc990153fSearch in Google Scholar PubMed

89. Thiele, N. A., et al.: An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew. Chem. Int. Edit. 56, 14712 (2017).10.1002/anie.201709532Search in Google Scholar PubMed

90. Morgenstern, A. F., Bruchertseifer, F., Apostolidis, C.: Targeted alpha therapy with 213Bi. Curr. Radiopharm. 4, 295 (2011).10.2174/1874471011104040295Search in Google Scholar PubMed

91. Morgenstern, A., Apostolidis, C., Kratochwil, C., Sathekge, M., Krolicki, L., Bruchertseifer, F.: An overview of targeted alpha therapy with 225actinium and 213bismuth. Curr. Radiopharm. 11, 200 (2018).10.2174/1874471011666180502104524Search in Google Scholar PubMed PubMed Central

92. Park, S. I., Shenoi, J., Pagel, J. M., Hamlin, D. K., Wilbur, D. S., Orgun, N., Kenoyer, A. L., Frayo, S., Axtman, A., Bäck, T., Lin, Y., Fisher, D. R., Gopal, A. K., Green, D. J., Press, O. W.: Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 116, 4231 (2010).10.1182/blood-2010-05-282327Search in Google Scholar PubMed PubMed Central

93. Wilson, J. J., Ferrier, M., Radchenko, V., Maassen, J. R., Engle, J. W., Batista, E. R., Martin, R. L., Nortier, F. M., Fassbender, M. E., John, K. D., Birnbaum, E. R.: Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes. Nucl. Med. Biol. 42, 428 (2015).10.1016/j.nucmedbio.2014.12.007Search in Google Scholar PubMed

94. Simecek, J., Hermann, P., Seidl, C., Bruchertseifer, F., Morgenstern, A., Wester, H. J., Notni, J.: Efficient formation of inert Bi-213 chelates by tetraphosphorus acid analogues of DOTA: towards improved alpha-therapeutics. EJNMMI Res. 8, 78 (2018).10.1186/s13550-018-0431-3Search in Google Scholar PubMed PubMed Central

95. Sathekge, M., Knoesen, O., Meckel, M., Modiselle, M., Vorster, M., Marx, S.: 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. I. 44, 1099 (2017).10.1007/s00259-017-3657-9Search in Google Scholar PubMed PubMed Central

96. Krolicki, L., et al.: Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. Eur. J. Nucl. Med. Mol. I. 45, 1636 (2018).10.1007/s00259-018-4015-2Search in Google Scholar PubMed PubMed Central

97. Kratochwil, C., Bruchertseifer, F., Rathke, H., Hohenfellner, M., Giesel, F. L., Haberkorn, U., Morgenstern, A.: Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J. Nucl. Med. 59, 795 (2018).10.2967/jnumed.117.203539Search in Google Scholar PubMed

98. Kratochwil, C., Schmidt, K., Afshar-Oromieh, A., Bruchertseifer, F., Rathke, H., Morgenstern, A., Haberkorn, U., Giesel, F. L.: Targeted alpha therapy of mCRPC: dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. I. 45, 31 (2018).10.1007/s00259-017-3817-ySearch in Google Scholar PubMed PubMed Central

99. Raja, C., Graham, P., Rizvi, S., Song, E., Goldsmith, H., Thompson, J., Bosserhoff, A., Morgenstern, A., Apostolidis, C., Kearsley, J., Reisfeld, R., Allen, B. J.: Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 6, 846 (2007).10.4161/cbt.6.6.4089Search in Google Scholar PubMed

100. Allen, B. J., Singla, A. A., Rizvi, S. M., Graham, P., Bruchertseifer, F., Apostolidis, C., Morgenstern, A.: Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy. Immunotherapy 3, 1041 (2011).10.2217/imt.11.97Search in Google Scholar PubMed

101. Allen, B. J., Raja, C., Rizvi, S., Li, Y., Tsui, W., Graham, P., Thompson, J., Reisfeld, R., Kearsley, J., Morgenstern, A., Apostolidis, C.: Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 4, 1318 (2005).10.4161/cbt.4.12.2251Search in Google Scholar PubMed

102. Cordier, D., Forrer, F., Bruchertseifer, F., Morgenstern, A., Apostolidis, C., Good, S., Muller-Brand, J., Macke, H., Reubi, J. C., Merlo, A.: Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8, Met(O2)11]-substance P: a pilot trial. Eur. J. Nucl. Med. Mol. I. 37, 1335 (2010).10.1007/s00259-010-1385-5Search in Google Scholar PubMed

103. Kratochwil, C., Giesel, F. L., Bruchertseifer, F., Mier, W., Apostolidis, C., Boll, R., Murphy, K., Haberkorn, U., Morgenstern, A.: 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur. J. Nucl. Med. Mol. I. 41, 2106 (2014).10.1007/s00259-014-2857-9Search in Google Scholar PubMed PubMed Central

104. Pruszynski, M., D’Huyvetter, M., Bruchertseifer, F., Morgenstern, A., Lahoutte, T.: Evaluation of an anti-HER2 nanobody labeled with 225Ac for targeted alpha-particle therapy of cancer. Mol. Pharm. 15, 1457 (2018).10.1021/acs.molpharmaceut.7b00985Search in Google Scholar PubMed

105. McDevitt, M. R., Thorek, D. L. J., Hashimoto, T., Gondo, T., Veach, D. R., Sharma, S. K., Kalidindi, T. M., Abou, D. S., Watson, P. A., Beattie, B. J., Timmermand, O. V., Strand, S. E., Lewis, J. S., Scardino, P. T., Scher, H. I., Lilja, H., Larson, S. M., Ulmert, D.: Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. Nat. Commun. 9, 1629 (2018).10.1038/s41467-018-04107-wSearch in Google Scholar PubMed PubMed Central

106. Majkowska-Pilip, A., Rius, M., Bruchertseifer, F., Apostolidis, C., Weis, M., Bonelli, M., Laurenza, M., Krolicki, L., Morgenstern, A.: In vitro evaluation of 225Ac-DOTA-substance P for targeted alpha therapy of glioblastoma multiforme. Chem. Biol. Drug Des. 92, 1344 (2018).10.1111/cbdd.13199Search in Google Scholar PubMed

107. Jurcic, J. G.: Clinical studies with bismuth-213 and actinium-225 for hematologic malignancies. Curr. Radiopharm. 11, 192 (2018).10.2174/1874471011666180525102814Search in Google Scholar PubMed

108. Henriksen, G., Hoff, P., Alstad, J., Larsen, R. H.: 223Ra for endoradiotherapeutic applications prepared from an immobilized 227Ac/227Th source. Radiochim. Acta 89, 661 (2001).10.1524/ract.2001.89.10.661Search in Google Scholar

109. Soderquist, C. Z., McNamara, B. K., Fisher, D. R.: Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. Curr. Radiopharm. 5, 244 (2012).10.2174/1874471011205030244Search in Google Scholar PubMed

110. Zhuikov, B. L., Kalmykov, S. N., Ermolaev, S. V., Aliev, R. A., Kokhanyuk, V. M., Matushko, V. L., Tananaev, I. G., Myasoedov, B. F.: Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochemistry 53, 73 (2011).10.1134/S1066362211010103Search in Google Scholar

111. Weidner, J. W., Mashnik, S. G., John, K. D., Hemez, F., Ballard, B., Bach, H., Birnbaum, E. R., Bitteker, L. J., Couture, A., Dry, D., Fassbender, M. E., Gulley, M. S., Jackman, K. R., Ullmann, J. L., Wolfsberg, L. E., Nortier, F. M.: Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl. Radiat. Isotopes 70, 2602 (2012).10.1016/j.apradiso.2012.07.006Search in Google Scholar PubMed

112. Ivanov, P. I., Collins, S. M., van Es, E. M., Garcia-Miranda, M., Jerome, S. M., Russell, B. C.: Evaluation of the separation and purification of 227Th from its decay progeny by anion exchange and extraction chromatography. Appl. Radiat. Isotopes 124, 100 (2017).10.1016/j.apradiso.2017.03.020Search in Google Scholar PubMed

113. Vasiliev, A. N., Ostapenko, V. S., Lapshina, E. V., Ermolaev, S. V., Danilov, S. S., Zhuikov, B. L., Kalmykov, S. N.: Recovery of Ra-223 from natural thorium irradiated by protons. Radiochim. Acta 104, 539 (2016).10.1515/ract-2015-2549Search in Google Scholar

114. Guseva, L. I., Tikhomirova, G. S., Dogadkin, N. N.: Anion-exchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac-223Ra generator. Radiochemistry 46, 58 (2004).10.1023/B:RACH.0000024637.39523.e4Search in Google Scholar

115. Larsen, R. H., Borrebaek, J., Dahle, J., Melhus, K. B., Krogh, C., Valan, M. H., Bruland, O. S.: Preparation of TH227-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. Cancer Biother. Radiopharm. 22, 431 (2007).10.1089/cbr.2006.321Search in Google Scholar PubMed

116. Heyerdahl, H., Abbas, N., Brevik, E. M., Mollatt, C., Dahle, J.: Fractionated therapy of HER2-expressing breast and ovarian cancer xenografts in mice with targeted alpha emitting 227Th-DOTA-p-benzyl-trastuzumab. PLoS One 7, e42345 (2012).10.1371/journal.pone.0042345Search in Google Scholar PubMed PubMed Central

117. Frenvik, J. O., Dyrstad, K., Kristensen, S., Ryan, O. B.: Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part II: purification of targeted thorium conjugates on cation exchange columns. Drug Dev Ind Pharm 43, 1440 (2017).10.1080/03639045.2017.1318906Search in Google Scholar PubMed

118. Ramdahl, T., Bonge-Hansen, H. T., Ryan, O. B., Larsen, S., Herstad, G., Sandberg, M., Bjerke, R. M., Grant, D., Brevik, E. M., Cuthbertson, A. S.: An efficient chelator for complexation of thorium-227. Bioorg. Med. Chem. Lett. 26, 4318 (2016).10.1016/j.bmcl.2016.07.034Search in Google Scholar PubMed

119. Hagemann, U. B., Mihaylova, D., Uran, S. R., Borrebaek, J., Grant, D., Bjerke, R. M., Karlsson, J., Cuthbertson, A. S.: Targeted alpha therapy using a novel CD70 targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma. Oncotarget 8, 56311 (2017).10.18632/oncotarget.16910Search in Google Scholar PubMed PubMed Central

120. Captain, I., Deblonde, G. J., Rupert, P. B., An, D. D., Illy, M. C., Rostan, E., Ralston, C. Y., Strong, R. K., Abergel, R. J.: Engineered recognition of tetravalent zirconium and thorium by chelator-protein systems: toward flexible radiotherapy and imaging platforms. Inorg. Chem. 55, 11930 (2016).10.1021/acs.inorgchem.6b02041Search in Google Scholar PubMed

121. Gott, M., Steinbach, J., Mamat, C.: The radiochemical and radiopharmaceutical applications of radium. Open Chem. 14, 118 (2016).10.1515/chem-2016-0011Search in Google Scholar

122. Henriksen, G., Schoultz, B. W., Michaelsen, T. E., Bruland, O. S., Larsen, R. H.: Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides. Nucl. Med. Biol. 31, 441 (2004).10.1016/j.nucmedbio.2003.11.004Search in Google Scholar PubMed

123. Dahle, J., Borrebaek, J., Jonasdottir, T. J., Hjelmerud, A. K., Melhus, K. B., Bruland, O. S., Press, O. W., Larsen, R. H.: Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate. Blood 110, 2049 (2007).10.1182/blood-2007-01-066803Search in Google Scholar PubMed

124. Hagemann, U. B., Wickstroem, K., Wang, E., Shea, A. O., Sponheim, K., Karlsson, J., Bjerke, R. M., Ryan, O. B., Cuthbertson, A. S.: In vitro and in vivo efficacy of a novel CD33-targeted thorium-227 conjugate for the treatment of acute myeloid leukemia. Mol. Cancer Ther. 15, 2422 (2016).10.1158/1535-7163.MCT-16-0251Search in Google Scholar PubMed

125. Nilsson, S.: Radionuclide therapies in prostate cancer: integrating radium-223 in the treatment of patients with metastatic castration-resistant prostate cancer. Curr. Oncol. Rep. 18, 14 (2016).10.1007/s11912-015-0495-4Search in Google Scholar PubMed PubMed Central

126. Bruland, O. S., Jonasdottir, T. J., Fisher, D. R., Larsen, R. H.: Radium-223: from radiochemical development to clinical applications in targeted cancer therapy. Curr. Radiopharm. 1, 203 (2008).10.2174/1874471010801030203Search in Google Scholar

127. Liepe, K., Shinto, A.: From palliative therapy to prolongation of survival: 223RaCl2 in the treatment of bone metastases. Ther. Adv. Med. Oncol. 8, 294 (2016).10.1177/1758834016640494Search in Google Scholar PubMed PubMed Central

128. Kluetz, P. G., Pierce, W., Maher, V. E., Zhang, H., Tang, S., Song, P., Liu, Q., Haber, M. T., Leutzinger, E. E., Al-Hakim, A., Chen, W., Palmby, T., Alebachew, E., Sridhara, R., Ibrahim, A., Justice, R., Pazdur, R.: Radium Ra 223 dichloride injection: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res. 20, 9 (2014).10.1158/1078-0432.CCR-13-2665Search in Google Scholar PubMed

129. Florimonte, L., Dellavedova, L., Maffioli, L. S.: Radium-223 dichloride in clinical practice: a review. Eur. J. Nucl. Med. Mol. I. 43, 1896 (2016).10.1007/s00259-016-3386-5Search in Google Scholar

130. Parker, C., Heidenreich, A., Nilsson, S., Shore, N.: Current approaches to incorporation of radium-223 in clinical practice. Prostate Cancer Prostatic Dis. 21, 37 (2018).10.1038/s41391-017-0020-ySearch in Google Scholar

131. Saad, F., et al.: Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial. Lancet Oncol. 17, 1306 (2016).10.1016/S1470-2045(16)30173-5Search in Google Scholar

132. Radchenko, V., Engle, J. W., Wilson, J. J., Maassen, J. R., Nortier, M. F., Birnbaum, E. R., John, K. D., Fassbender, M. E.: Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal. Radiochim. Acta 104, 291 (2016).10.1515/ract-2015-2486Search in Google Scholar

133. Morgenstern, A., Lebeda, O., Stursa, J., Bruchertseifer, F., Capote, R., McGinley, J., Rasmussen, G., Sin, M., Zielinska, B., Apostolidis, C.: Production of U-230/Th-226 for targeted alpha therapy via proton irradiation of Pa-231. Anal. Chem. 80, 8763 (2008).10.1021/ac801304cSearch in Google Scholar PubMed

134. Morgenstern, A., Apostolidis, C., Bruchertseifer, F., Capote, R., Gouder, T., Simonelli, F., Sin, M., Abbas, K.: Cross-sections of the reaction Th-232(p,3n)Pa-230 for reaction of U-230 production for targeted alpha therapy. Appl. Radiat. Isotopes 66, 1275 (2008).10.1016/j.apradiso.2008.02.066Search in Google Scholar PubMed

135. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Metivier, V.: 232Th(d,4n)230Pa cross-section measurements at ARRONAX facility for the production of 230U. Nucl. Med. Biol. 41(Suppl), e19 (2014).10.1016/j.nucmedbio.2013.12.011Search in Google Scholar PubMed

136. Dybczynski, R. S., Pyszynska, M., Chajduk, E.: A novel method for the separation of uranium, protactinium and thorium by cation exchange chromatography. In: J. Michalik, W. Smulek, E. Godlewska-Para, (Eds.), Warsaw, (2010), p. 70.Search in Google Scholar

137. Mastren, T., Stein, B. W., Parker, T. G., Radchenko, V., Copping, R., Owens, A., Wyant, L. E., Brugh, M., Kozimor, S. A., Nortier, F. M., Birnbaum, E. R., John, K. D., Fassbender, M. E.: Separation of protactinium employing sulfur-based extraction chromatographic resins. Anal. Chem. 90, 7012 (2018).10.1021/acs.analchem.8b01380Search in Google Scholar PubMed

138. Müller, C., Domnanich, K. A., Umbricht, C. A., Van der Meulen, N. P.: Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Brit. J. Radiol. 91, 20180074 (2018).10.1259/bjr.20180074Search in Google Scholar PubMed PubMed Central

139. Allen, B. J.: Targeted alpha therapy: evidence for potential efficacy of alpha-immunoconjugates in the management of micrometastatic cancer. Australas. Radiol. 43, 480 (1999).10.1046/j.1440-1673.1999.00717.xSearch in Google Scholar PubMed

140. Beyer, G. J., Comor, J. J., Dakovic, M., Soloviev, D., Tamburella, C., Hagebø, E., Allan, B., Dmitriev, S. N., Zaitseva, N. G.: Production routes of the alpha emitting 149Tb for medical application. Radiochim. Acta 90, 247 (2002).10.1524/ract.2002.90.5_2002.247Search in Google Scholar

141. Zaitseva, N. G., Dmitriev, S. N., Maslov, O. D., Molokanova, L. G., Starodub, G. Y., Shishkin, S. V., Shishkina, T. V., Beyer, G. J.: Terbium-149 for nuclear medicine. The production of 149Tb via heavy ions induced nuclear reactions Czech. J. Phys. 53, A455 (2003).10.1007/s10582-003-0058-zSearch in Google Scholar

142. Beyer, G. J., Miederer, M., Vranjes-Duric, S., Comor, J. J., Künzi, G., Hartley, O., Senekowitsch-Schmidtke, R., Soloviev, D., Buchegger, F.: Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur. J. Nucl. Med. Mol. I. 31, 547 (2004).10.1007/s00259-003-1413-9Search in Google Scholar

143. Müller, C., Zhernosekov, K., Koster, U., Johnston, K., Dorrer, H., Hohn, A., van der Walt, N. T., Turler, A., Schibli, R.: A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for alpha- and beta-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med. 53, 1951 (2012).10.2967/jnumed.112.107540Search in Google Scholar

144. Kulyukhin, S. A., Auerman, L. N., Novichenko, V. L., Mikheev, N. B., Rumer, I. A., Kamenskaya, A. N., Goncharov, L. A., Smirnov, A. I.: Production of microgram quantities of einsteinium-253 by the reactor irradiation of californium. Inorg. Chim. Acta 110, 25 (1985).10.1016/S0020-1693(00)81347-XSearch in Google Scholar

145. Baybarz, R. D.: Dissociation constants of the transplutonium element chelates of diethylenepentaacetic acid (DTPA) and the application of DTPA chelates to solvent extraction separations of transplutonium elements from the lanthanide elements. J. Inorg. Nucl. Chem. 27, 1831 (1965).10.1016/0022-1902(65)80327-XSearch in Google Scholar

Received: 2018-12-21
Accepted: 2019-04-12
Published Online: 2019-05-22
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: 150 years of the Periodic Table of Chemical Elements
  3. Part A: Actinides and Transactinides
  4. Evolution of the periodic table through the synthesis of new elements
  5. Nuclear and chemical characterization of heavy actinides
  6. Direct mass measurements and ionization potential measurements of the actinides
  7. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
  8. The periodic table – an experimenter’s guide to transactinide chemistry
  9. Synthesis and properties of isotopes of the transactinides
  10. Part B: Nuclear Energy
  11. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
  12. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
  13. Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
  14. Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
  15. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
  16. What do we know about actinides-proteins interactions?
  17. Part C: Medical Radionuclides
  18. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
  19. Radiochlorine: an underutilized halogen tool
  20. Radiobromine and radioiodine for medical applications
  21. Radiochemical aspects of alpha emitting radionuclides for medical application
  22. Chelators and metal complex stability for radiopharmaceutical applications
Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-0005/pdf?lang=en
Scroll to top button