Startseite Naturwissenschaften Chelators and metal complex stability for radiopharmaceutical applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chelators and metal complex stability for radiopharmaceutical applications

  • Nkemakonam C. Okoye , Jakob E. Baumeister , Firouzeh Najafi Khosroshahi , Heather M. Hennkens EMAIL logo und Silvia S. Jurisson EMAIL logo
Veröffentlicht/Copyright: 20. Juli 2019

Abstract

Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.

Acknowledgments

The authors acknowledge the University of Missouri Fellowship Program (J. E. Baumeister) in Radiochemistry supported by a grant to The Curators of the University of Missouri under award #NRC-HQ-15-G-0036, from the Office of the Chief Human Capital Officer of the Nuclear Regulatory Commission. Any statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the view of the Outreach and Recruitment Branch of the US Nuclear Regulatory Commission. The authors gratefully acknowledge support from the US Department of Energy, Office of Science, Isotope Research Program under grants DE-SC0018662 and DE-SC0018013 (F. Najafi Khosroshahi).

References

1. Bailey, D. L., Huum, J., Todd-Pokropek, A., Aswegen, A. V.: Nuclear medicine physics: a handbook for teachers and students, Vienna, International Atomic Energy Agency (IAEA) (2014).Suche in Google Scholar

2. Deppen, S. A., Liu, E., Blume, J. D., Clanton, J., Shi, C., Jones-Jackson, L. B., Lakhani, V., Baum, R. P., Berlin, J., Smith, G. T.: Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors. J. Nucl. Med. 57, 708 (2016).10.2967/jnumed.115.163865Suche in Google Scholar PubMed PubMed Central

3. Strosberg, J., El-Haddad, G., Wolin, E., Hendifar, A., Yao, J., Chasen, B., Mittra, E., Kunz, P. L., Kulke, M. H., Jacene, H.: Phase 3 trial of 177Lu-DOTATATE for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125 (2017).10.1056/NEJMoa1607427Suche in Google Scholar PubMed PubMed Central

4. Cutler, C. S., Hennkens, H. M., Sisay, N., Huclier-Markai, S., Jurisson, S. S.: Radiometals for combined imaging and therapy. Chem. Rev. 113, 858 (2012).10.1021/cr3003104Suche in Google Scholar PubMed

5. Boros, E., Packard, A. B.: Radioactive transition metals for imaging and therapy. Chem. Rev. 119(2), 870 (2018).10.1021/acs.chemrev.8b00281Suche in Google Scholar PubMed

6. Kostelnik, T. I., Orvig, C.: Radioactive main group and rare earth metals for imaging and therapy. Chem. Rev. 119(2), 902 (2018).10.1021/acs.chemrev.8b00294Suche in Google Scholar PubMed

7. Southworth, R., de Rosales, M. R. T., Meszaros, L. K., Ma, M. T., Mullen, G. E. D., Fruhwirth, G., Young, J. D., Imberti, C., Bagunya-Torres, J., Andreozzi, E., Blower, P. J.: Opportunities and challenges for metal chemistry in molecular imaging: from gamma camera imaging to PET and multimodality imaging. Adv. Inorg. Chem. 68, 1 (2016).10.1016/bs.adioch.2015.09.001Suche in Google Scholar PubMed PubMed Central

8. Burke, B. P., Seemann, J., Archibald, S. J.: Advanced chelator design for metal complexes in imaging applications: radiopharmaceuticals, protein targeting, and conjugation. Adv. Inorg. Chem. 68, 301 (2016).10.1016/bs.adioch.2015.11.002Suche in Google Scholar

9. Okarvi, S. M., Maecke, H. R.: Radiometallo-labeled peptides in tumor diagnosis and targeted radiotherapy. Adv. Inorg. Chem. 68, 341 (2016).10.1016/bs.adioch.2015.11.003Suche in Google Scholar

10. Piramoon, M., Hosseinimehr, S. J.: The past, current studies and future of organometallic 99mTc(CO)3 labeled peptides and proteins. Curr. Pharm. Design 22, 4854 (2016).10.2174/1381612822666160623081838Suche in Google Scholar PubMed

11. Zeglis, B. M., Houghton, J. L., Evans, M. J., Viola-Villegas, N., Lewis, J. S.: Underscoring the influence of inorganic chemistry on nuclear imaging with radiometals. Inorg. Chem. 53, 1880 (2014).10.1021/ic401607zSuche in Google Scholar PubMed PubMed Central

12. Giblin, M. F., Wang, N., Hoffman, T. J., Jurisson, S. S., Quinn, T. P.: Design and characterization of α-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination. Proc. Natl. Acad. Sci. USA 95, 12814 (1998).10.1073/pnas.95.22.12814Suche in Google Scholar PubMed PubMed Central

13. Chen, J., Cheng, Z., Hoffman, T. J., Jurisson, S. S., Quinn, T. P.: Melanoma-targeting properties of 99mTechnetium-labeled cyclic α-melanocyte-stimulating hormone peptide analogues. Cancer Res. 60, 5649 (2000).Suche in Google Scholar

14. O’Neil, J. P., Carlson, K. E., Anderson, C. J., Welch, M. J., Katzenellenbogen, J. A.: Progestin radiopharmaceuticals labeled with technetium and rhenium: synthesis, binding affinity, and in vivo distribution of a new progestin N2S2 – metal conjugate. Bioconjugate Chem. 5, 182 (1994).10.1021/bc00027a002Suche in Google Scholar PubMed

15. Hom, R. K., Chi, D. Y., Katzenellenbogen, J. A.: Heterodimeric Bis(amino thiol) complexes of oxorhenium(V) that mimic the structure of steroid hormones. Synthesis and stereochemical issues. J. Org. Chem. 61, 2624 (1996).10.1021/jo951995kSuche in Google Scholar PubMed

16. Boonstra, M. C., De Geus, S. W., Prevoo, H. A., Hawinkels, L. J., Van De Velde, C. J., Kuppen, P. J., Vahrmeijer, A. L., Sier, C. F.: Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins. Biomark. Cancer. 8, BIC. S38542 (2016).10.4137/BIC.S38542Suche in Google Scholar PubMed PubMed Central

17. Notni, J., Wester, H. J.: A practical guide on the synthesis of metal chelates for molecular imaging and therapy by means of click chemistry. Chem. Eur. J. 22, 11500 (2016).10.1002/chem.201600928Suche in Google Scholar PubMed

18. Altai, M., Membreno, R., Cook, B., Tolmachev, V., Zeglis, B. M.: Pretargeted imaging and therapy. J. Nucl. Med. 58, 1553 (2017).10.2967/jnumed.117.189944Suche in Google Scholar PubMed PubMed Central

19. Wadas, T. J., Wong, E. H., Weisman, G. R., Anderson, C. J.: Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 110, 2858 (2010).10.1021/cr900325hSuche in Google Scholar PubMed PubMed Central

20. Weller, M., Overton, T., Rourke, J., Armstrong, F.: Inorganic Chemistry, 7th Ed., Oxford University Press, Oxford, UK (2018), p. 237.Suche in Google Scholar

21. McMurry, J. E., Fay, R. C.: General Chemistry, Atoms First, 2nd Ed., Pearson Education, Inc., Upper Saddle River, NJ (2014), p. 511.Suche in Google Scholar

22. Dearling, J. L. J., Voss, S. D., Dunning, P. Snay, E., Fahey, F., Smith, S. V., Huston, J. S., Meares, C. F., Treves, S. T., Packard, A. B.: Imaging cancer using PET – the effect of the bifunctional chelator on the biodistribution of a 64Cu-labeled antibody. Nucl. Med. Biol. 38, 29 (2011).10.1016/j.nucmedbio.2010.07.003Suche in Google Scholar PubMed PubMed Central

23. Anderson, C. J., Pajeau, T. S., Edwards, W. B., Sherman, E. L. C., Rogers, B. E., Welch, M. J.: In vitro and in vivo evaluation of copper-64-octreotide conjugates. J. Nucl. Med. 36, 2315 (1995).Suche in Google Scholar

24. Rogers, B. E., Anderson, C. J., Connett, J. M., Guo, L. W., Edwards, W. B., Sherman, E. L. C., Zinn, K. R., Welch, M. J.: Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconjugate Chem. 7, 511 (1996).10.1021/bc9600372Suche in Google Scholar PubMed

25. Fani, M., Del Pozzo, L., Abiraj, K., Mansi, R., Tamma, M. L., Cescato, R., Waser, B., Weber, W. A., Reubi, J. C., Maecke, H. R.: PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J. Nucl. Med. 52(7), 1110 (2011).10.2967/jnumed.111.087999Suche in Google Scholar PubMed

26. Papagiannopoulou, D.: Technetium-99m radiochemistry for pharmaceutical applications. J. Label. Compd. Radiopharm. 60, 502 (2017).10.1002/jlcr.3531Suche in Google Scholar

27. Maecke, H. R., Riesen, A., Ritter, W.: The molecular structure of indium-DTPA. J. Nucl. Med. 30, 1235 (1989).Suche in Google Scholar

28. Olsen, J. O., Pozderac, R. V., Hinkle, G., Hill, T., O’Dorisio, T. M., Schirmer, W. J., Ellison, E. C., O’Dorisio, M. S.: Somatostatin receptor imaging of neuroendocrine tumors with indium-111 pentetreotide (Octreoscan). Semin. Nucl. Med. 25, 251 (1995).10.1016/S0001-2998(95)80014-XSuche in Google Scholar

29. Han, M., Partin, A. W.: Current clinical applications of the 111In-capromab Pendetide Scan (ProstaScint® Scan, Cyt-356). Rev. Urol. 3, 165 (2001).Suche in Google Scholar

30. Ramogida, C. F., Orvig, C.: Tumour targeting with radiometals for diagnosis and therapy. Chem. Commun. (Camb.) 49, 4720 (2013).10.1039/c3cc41554fSuche in Google Scholar

31. Price, E. W., Orvig, C.: Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 43, 260 (2014).10.1039/C3CS60304KSuche in Google Scholar

32. Hnatowich, D. J., Chinol, M., Siebecker, D. A., Gionet, M., Griffin, T., Doherty, P. W., Hunter, R., Kase, K. R.: Patient biodistribution of intraperitoneally administered yttrium-90-labeled antibody. J. Nucl. Med. 29, 1428 (1988).Suche in Google Scholar

33. Brechbiel, M. W., Gansow, O. A.: Backbone-substituted DTPA ligands for Yttrium-90 radioimmunotherapy. Bioconjugate Chem. 2, 187 (1991).10.1021/bc00009a008Suche in Google Scholar

34. Lattuada, L., Barge, A., Cravotto, G., Giovenzana, G. B., Tei, L.: The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem. Soc. Rev. 40, 3019 (2011).10.1039/c0cs00199fSuche in Google Scholar

35. Gansow, O. A., Top, L. E., Perentesis, P., Reynolds, J. C., Nelson, D. L., Waldmann, T. A.: Similarities and differences in 111In and 90Y labeled 1B4M-DTPA AntiTac monoclonal antibody distribution. J. Nucl. Med. 40, 268 (1999).Suche in Google Scholar

36. Camera, L., Kinuya, S., Garmestani, K., Brechbiel, M. W., Wu, C. C., Pai, L. H., Mcmurry, T. J., Gansow, O. A., Pastan, I., Paik, C. H., Carrasquillo, J. A.: Comparative biodistribution of indium-labeled and yttrium-labeled B3 monoclonal-antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1b4m-DTPA) or 2-(p-SCN-Bz)-1,4,7,10-tetraazacyclododecane tetraacetic acid (2b-DOTA). Eur. J. Nucl. Med. 21, 640 (1994).10.1007/BF00285586Suche in Google Scholar

37. Wiseman, G. A., White, C. A., Stabin, M., Dunn, W. L., Erwin, W., Dahlbom, M., Raubitschek, A., Karvelis, K., Schultheiss, T., Witzig, T. E., Belanger, R., Spies, S., Silverman, D. H., Berlfein, J. R., Ding, E., Grillo-Lopez, A. J.: Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur. J. Nucl. Med. Mol. Imaging 27, 766 (2000).10.1007/s002590000276Suche in Google Scholar

38. Wiseman, G. A., White, C. A., Sparks, R. B., Erwin, W. D., Podoloff, D. A., Lamonica, D., Bartlett, N. L., Parker, J. A., Dunn, W. L., Spies, S. M., Belanger, R., Witzig, T. E., Leigh, B. R.: Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin (TM) radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit. Rev. Oncol. Hematol. 39, 181 (2001).10.1016/S1040-8428(01)00107-XSuche in Google Scholar

39. Camera, L., Kinuya, S., Garmestani, K., Wu, C., Brechbiel, M. W., Pai, L. H., McMurry, T. J., Gansow, O. A., Pastan, I., Paik, C. H., et al.: Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. J. Nucl. Med. 35, 882 (1994).Suche in Google Scholar

40. Brechbiel, M. W., Gansow, O. A.: Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labelling of monoclonal antibodies with the Bismuth-212 α-particle emitter. J. Chem. Soc., Perkin Trans. 1, 1173 (1992).10.1039/P19920001173Suche in Google Scholar

41. Milenic, D. E., Roselli, M., Mirzadeh, S., Pippin, C. G., Gansow, O. A., Colcher, D., Brechbiel, M. W., Schlom, J.: In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. Cancer Biother. Radiopharm. 16, 133 (2001).10.1089/108497801300189227Suche in Google Scholar

42. Wei, L., Zhang, X., Gallazzi, F., Miao, Y., Jin, X., Brechbiel, M. W., Xu, H., Clifford, T., Welch, M. J., Lewis, J. S.: Melanoma imaging using 111In, 86Y and 68Ga-labeled CHX-A″-Re(Arg11)CCMSH. Nucl. Med. Biol. 36, 345 (2009).10.1016/j.nucmedbio.2009.01.007Suche in Google Scholar

43. Blend, M. J., Stastny, J. J., Swanson, S. M., Brechbiel, M. W.: Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother. Radiopharm. 18, 355 (2003).10.1089/108497803322285107Suche in Google Scholar

44. Baur, B., Solbach, C., Andreolli, E., Winter, G., Machulla, H.-J., Reske, S. N.: Synthesis, radiolabelling and in vitro characterization of the gallium-68-, yttrium-90-and lutetium-177-labelled PSMA Ligand, CHX-A″-DTPA-DUPA-Pep. Pharmaceuticals 7, 517 (2014).10.3390/ph7050517Suche in Google Scholar

45. Milenic, D. E., Garmestani, K., Chappell, L. L., Dadachova, E., Yordanov, A., Ma, D., Schlom, J., Brechbiel, M. W.: In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl. Med. Biol. 29, 431 (2002).10.1016/S0969-8051(02)00294-9Suche in Google Scholar

46. Hens, M., Vaidyanathan, G., Zhao, X. G., Bigner, D. D., Zalutsky, M. R.: Anti-EGFRvIII monoclonal antibody armed with 177Lu: in vivo comparison of macrocyclic and acyclic ligands. Nucl. Med. Biol. 37, 741 (2010).10.1016/j.nucmedbio.2010.04.020Suche in Google Scholar

47. Pandya, D. N., Bhatt, N., Yuan, H., Day, C. S., Ehrmann, B. M., Wright, M., Bierbach, U., Wadas, T. J.: Zirconium tetraazamacrocycle complexes display extraordinary stability and provide a new strategy for zirconium-89-based radiopharmaceutical development. Chem. Sci. 8, 2309 (2017).10.1039/C6SC04128KSuche in Google Scholar

48. van de Watering, F. C., Rijpkema, M., Perk, L., Brinkmann, U., Oyen, W. J., Boerman, O. C.: Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed. Res. Int. 2014, 203601 (2014).10.1155/2014/203601Suche in Google Scholar

49. Deri, M. A., Zeglis, B. M., Francesconi, L. C., Lewis, J. S.: PET imaging with 89Zr: from radiochemistry to the clinic. Nucl. Med. Biol. 40, 3 (2013).10.1016/j.nucmedbio.2012.08.004Suche in Google Scholar

50. Eisenwiener, K. P., Powell, P., Macke, H. R.: A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg. Med. Chem. Lett. 10, 2133 (2000).10.1016/S0960-894X(00)00413-3Suche in Google Scholar

51. Chappell, L. L., Dadachova, E., Milenic, D. E., Garmestani, K., Wu, C., Brechbiel, M. W.: Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl. Med. Biol. 27, 93 (2000).10.1016/S0969-8051(99)00086-4Suche in Google Scholar

52. Meredith, R., Torgue, J., Shen, S., Fisher, D. R., Banaga, E., Bunch, P., Morgan, D., Fan, J., Straughn, J. M., Jr.: Dose escalation and dosimetry of first-in-human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. J. Nucl. Med. 55, 1636 (2014).10.2967/jnumed.114.143842Suche in Google Scholar PubMed PubMed Central

53. Meredith, R. F., Torgue, J., Azure, M. T., Shen, S., Saddekni, S., Banaga, E., Carlise, R., Bunch, P., Yoder, D., Alvarez, R.: Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother. Radiopharm. 29, 12 (2014).10.1089/cbr.2013.1531Suche in Google Scholar PubMed PubMed Central

54. Correia, J. D., Paulo, A., Raposinho, P. D., Santos, I.: Radiometallated peptides for molecular imaging and targeted therapy. Dalton Trans. 40, 6144 (2011).10.1039/c0dt01599gSuche in Google Scholar PubMed

55. Velikyan, I., Maecke, H., Langstrom, B.: Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjugate Chem. 19, 569 (2008).10.1021/bc700341xSuche in Google Scholar PubMed

56. Tsionou, M. I., Knapp, C. E., Foley, C. A., Munteanu, C. R., Cakebread, A., Imberti, C., Eykyn, T. R., Young, J. D., Paterson, B. M., Blower, P. J., Ma, M. T.: Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 7, 49586 (2017).10.1039/C7RA09076ESuche in Google Scholar PubMed PubMed Central

57. Maheshwari, V., Dearling, J. L., Treves, S. T., Packard, A. B.: Measurement of the rate of copper (II) exchange for 64Cu complexes of bifunctional chelators. Inorg. Chim. Acta 393, 318 (2012).10.1016/j.ica.2012.07.012Suche in Google Scholar

58. Zhang, Y., Hong, H., Engle, J. W., Bean, J., Yang, Y., Leigh, B. R., Barnhart, T. E., Cai, W.: Positron emission tomography imaging of CD105 expression with a 64Cu-labeled monoclonal antibody: NOTA is superior to DOTA. PLoS One 6, e28005 (2011).10.1371/journal.pone.0028005Suche in Google Scholar PubMed PubMed Central

59. Kubicek, V., Bohmova, Z., Sevcikova, R., Vanek, J., Lubal, P., Polakova, Z., Michalicova, R., Kotek, J., Hermann, P.: NOTA complexes with copper(II) and divalent metal ions: kinetic and thermodynamic studies. Inorg. Chem. 57, 3061 (2018).10.1021/acs.inorgchem.7b02929Suche in Google Scholar PubMed

60. André, J. P., Maecke, H. R., Zehnder, M., Macko, L., Akyel, K. G.: 1, 4, 7-Triazacyclononane-1-succinic acid-4, 7-diacetic acid (NODASA): a new bifunctional chelator for radio gallium-labelling of biomolecules. Chem. Commun. 1301 (1998).10.1039/a801294fSuche in Google Scholar

61. Dutta, J., Chinthakindi, P. K., Arvidsson, P. I., de la Torre, B. G., Kruger, H. G., Govender, T., Naicker, T., Albericio, F.: A Facile synthesis of NODASA-functionalized peptide. Synlett 27, 1685 (2016).10.1055/s-0035-1561970Suche in Google Scholar

62. Eisenwiener, K. P., Prata, M. I., Buschmann, I., Zhang, H. W., Santos, A. C., Wenger, S., Reubi, J. C., Macke, H. R.: NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjugate Chem. 13, 530 (2002).10.1021/bc010074fSuche in Google Scholar PubMed

63. Rylova, S. N., Stoykow, C., Del Pozzo, L., Abiraj, K., Tamma, M. L., Kiefer, Y., Fani, M., Maecke, H. R.: The somatostatin receptor 2 antagonist 64Cu-NODAGA-JR11 outperforms 64Cu-DOTA-TATE in a mouse xenograft model. PLoS One 13, e0195802 (2018).10.1371/journal.pone.0195802Suche in Google Scholar PubMed PubMed Central

64. Ghosh, S. C., Pinkston, K. L., Robinson, H., Harvey, B. R., Wilganowski, N., Gore, K., Sevick-Muraca, E. M., Azhdarinia, A.: Comparison of DOTA and NODAGA as chelators for 64Cu-labeled immunoconjugates. Nucl. Med. Biol. 42, 177 (2015).10.1016/j.nucmedbio.2014.09.009Suche in Google Scholar PubMed

65. Chong, H. S., Song, H. A., Birch, N., Le, T., Lim, S., Ma, X.: Efficient synthesis and evaluation of bimodal ligand NETA. Bioorg. Med. Chem. Lett. 18, 3436 (2008).10.1016/j.bmcl.2008.03.084Suche in Google Scholar PubMed

66. Chong, H. S., Garmestani, K., Ma, D. S., Milenic, D. E., Overstreet, T., Brechbiel, M. W.: Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. J. Med. Chem. 45, 3458 (2002).10.1021/jm0200759Suche in Google Scholar PubMed

67. Kang, C. S., Sun, X., Jia, F., Song, H. A., Chen, Y., Lewis, M., Chong, H. S.: Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of 90Y and 177Lu for targeted radioimmunotherapy. Bioconjugate Chem. 23, 1775 (2012).10.1021/bc200696bSuche in Google Scholar PubMed PubMed Central

68. Kang, C. S., Chen, Y., Lee, H., Liu, D., Sun, X., Kweon, J., Lewis, M. R., Chong, H.-S.: Synthesis and evaluation of a new bifunctional NETA chelate for molecular targeted radiotherapy using 90Y or 177Lu. Nucl. Med. Biol. 42, 242 (2015).10.1016/j.nucmedbio.2014.10.004Suche in Google Scholar PubMed PubMed Central

69. Kang, C. S., Song, H. A., Milenic, D. E., Baidoo, K. E., Brechbiel, M. W., Chong, H.-S.: Preclinical evaluation of NETA-based bifunctional ligand for radioimmunotherapy applications using 212Bi and 213Bi: radiolabeling, serum stability, and biodistribution and tumor uptake studies. Nucl. Med. Biol. 40, 600 (2013).10.1016/j.nucmedbio.2013.01.012Suche in Google Scholar PubMed PubMed Central

70. Bass, L. A., Wang, M., Welch, M. J., Anderson, C. J.: In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjugate Chem. 11, 527 (2000).10.1021/bc990167lSuche in Google Scholar PubMed

71. Woodin, K. S., Heroux, K. J., Boswell, C. A., Wong, E. H., Weisman, G. R., Niu, W. J., Tomellini, S. A., Anderson, C. J., Zakharov, L. N., Rheingold, A. L.: Kinetic inertness and electrochemical behavior of copper(II) tetraazamacrocyclic complexes: possible implications for in vivo stability. Eur. J. Inorg. Chem. 2005, 4829 (2005).10.1002/ejic.200500579Suche in Google Scholar

72. Boswell, C. A., Sun, X., Niu, W., Weisman, G. R., Wong, E. H., Rheingold, A. L., Anderson, C. J.: Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J. Med. Chem. 47, 1465 (2004).10.1021/jm030383mSuche in Google Scholar PubMed

73. Wong, E. H., Weisman, G. R., Hill, D. C., Reed, D. P., Rogers, M. E., Condon, J. S., Fagan, M. A., Calabrese, J. C., Lam, K. C., Guzei, I. A., Rheingold, A. L.: Synthesis and characterization of cross-bridged cyclams and pendant-armed derivatives and structural studies of their copper(II) complexes. J. Am. Chem. Soc. 122, 10561 (2000).10.1021/ja001295jSuche in Google Scholar

74. Camus, N., Halime, Z., Le Bris, N., Bernard, H., Platas-Iglesias, C., Tripier, R.: Full control of the regiospecific N-functionalization of C-functionalized cyclam bisaminal derivatives and application to the synthesis of their TETA, TE2A, and CB-TE2A analogues. J. Org. Chem. 79, 1885 (2014).10.1021/jo4028566Suche in Google Scholar PubMed

75. Lewis, E. A., Boyle, R. W., Archibald, S. J.: Ultrastable complexes for in vivo use: a bifunctional chelator incorporating a cross-bridged macrocycle. Chem. Commun. (Camb.) 2212 (2004).10.1039/b406906dSuche in Google Scholar PubMed

76. Wadas, T. J., Anderson, C. J.: Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat. Protoc. 1, 3062 (2006).10.1038/nprot.2006.431Suche in Google Scholar PubMed

77. Boros, E., Ferreira, C. L., Cawthray, J. F., Price, E. W., Patrick, B. O., Wester, D. W., Adam, M. J., Orvig, C.: Acyclic chelate with ideal properties for 68Ga PET imaging agent elaboration. J. Am. Chem. Soc. 132, 15726 (2010).10.1021/ja106399hSuche in Google Scholar PubMed

78. Price, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J., Orvig, C.: H4octapa: an acyclic chelator for 111In radiopharmaceuticals. J. Am. Chem. Soc. 134, 8670 (2012).10.1021/ja3024725Suche in Google Scholar PubMed

79. Price, E. W., Zeglis, B. M., Cawthray, J. F., Ramogida, C. F., Ramos, N., Lewis, J. S., Adam, M. J., Orvig, C.: H4octapa-trastuzumab: versatile acyclic chelate system for 111In and 177Lu imaging and therapy. J. Am. Chem. Soc. 135, 12707 (2013).10.1021/ja4049493Suche in Google Scholar PubMed PubMed Central

80. Ramogida, C. F., Cawthray, J. F., Boros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J., Orvig, C.: H2CHXdedpa and H4CHXoctapa – chiral acyclic chelating ligands for 67/68Ga and 111In radiopharmaceuticals. Inorg. Chem. 54, 2017 (2015).10.1021/ic502942aSuche in Google Scholar PubMed

81. Cusnir, R., Imberti, C., Hider, R., Blower, P., Ma, M.: Hydroxypyridinone chelators: from iron scavenging to radiopharmaceuticals for PET imaging with gallium-68. Internat. J. Mol. Sci. 18(1), 116/1 (2017).10.3390/ijms18010116Suche in Google Scholar PubMed PubMed Central

82. Ma, M. T., Cullinane, C., Waldeck, K., Roselt, P., Hicks, R. J., Blower, P. J.: Rapid kit-based 68Ga-labelling and PET imaging with THP-Tyr3-octreotate: a preliminary comparison with DOTA-Tyr3-octreotate. EJNMMI Res. 5(1), 1 (2015).10.1186/s13550-015-0131-1Suche in Google Scholar PubMed PubMed Central

83. Young, J. D., Abbate, V., Imberti, C., Meszaros, L. K., Ma, M. T., Terry, S. Y., Hider, R. C., Mullen, G. E., Blower, P. J.: 68Ga-THP-PSMA: a PET imaging agent for prostate cancer offering rapid, room-temperature, 1-step kit-based radiolabeling. J. Nucl. Med. 58(8), 1270 (2017).10.2967/jnumed.117.191882Suche in Google Scholar PubMed PubMed Central

84. Hofman, M. S., Eu, P., Jackson, P., Hong, E., Binns, D., Iravani, A., Murphy, D., Mitchell, C., Siva, S., Hicks, R. J.: Cold kit for prostate-specific membrane antigen (PSMA) PET imaging: phase I study of 68Ga-Tris(Hydroxypyridinone)-PSMA PET/CT in patients with prostate cancer. J. Nucl. Med. 59(4), 625 (2018).10.2967/jnumed.117.199554Suche in Google Scholar PubMed PubMed Central

85. Berry, D. J., Ma, Y., Ballinger, J. R., Tavaré, R., Koers, A., Sunassee, K., Zhou, T., Nawaz, S., Mullen, G. E., Hider, R. C.: Efficient bifunctional gallium-68 chelators for positron emission tomography: tris (hydroxypyridinone) ligands. Chem. Commun. 47(25), 7068 (2011).10.1039/c1cc12123eSuche in Google Scholar PubMed PubMed Central

86. Nawaz, S., Mullen, G. E., Sunassee, K., Bordoloi, J., Blower, P. J., Ballinger, J. R.: Simple, mild, one-step labelling of proteins with gallium-68 using a tris (hydroxypyridinone) bifunctional chelator: a 68Ga-THP-scFv targeting the prostate-specific membrane antigen. EJNMMI Res. 7(1), 1 (2017).10.1186/s13550-017-0336-6Suche in Google Scholar PubMed PubMed Central

87. Di Bartolo, N. M., Sargeson, A. M., Donlevy, T. M., Smith, S. V.: Synthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radioimaging. J. Chem. Soc. Dalton Trans. 2303 (2001).10.1039/b103242aSuche in Google Scholar

88. Voss, S. D., Smith, S. V., DiBartolo, N., McIntosh, L. J., Cyr, E. M., Bonab, A. A., Dearling, J. L. J., Carter, E. A., Fischman, A. J., Treves, S. T., Gillies, S. D., Sargeson, A. M., Huston, J. S., Packard, A. B.: Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc. Nat. Acad. Sci. USA 104, 17489 (2007).10.1073/pnas.0708436104Suche in Google Scholar PubMed PubMed Central

89. Cooper, M. S., Ma, M. T., Sunassee, K., Shaw, K. P., Williams, J. D., Paul, R. L., Donnelly, P. S., Blower, P. J.: Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjugate Chem. 23, 1029 (2012).10.1021/bc300037wSuche in Google Scholar PubMed PubMed Central

90. Li, G., Wang, X., Zong, S., Wang, J., Conti, P. S., Chen, K.: MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol. Pharmaceutics 11, 3938 (2014).10.1021/mp500354xSuche in Google Scholar PubMed

91. Paterson, B. M., Alt, K., Jeffery, C. M., Price, R. I., Jagdale, S., Rigby, S., Williams, C. C., Peter, K., Hagemeyer, C. E., Donnelly, P. S.: Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew. Chem. Int. Ed. 53, 6115 (2014).10.1002/anie.201402613Suche in Google Scholar PubMed

92. Dearling, J. L. J., Paterson, B. M., Akurathi, V., Betanzos-Lara, S., Treves, S. T., Voss, S. D., White, J. M., Huston, J. S., Smith, S. V., Donnelly, P. S., Packard, A. B.: The ionic charge of copper-64 complexes conjugated to an engineered antibody affects biodistribution. Bioconjugate Chem. 26, 707 (2015).10.1021/acs.bioconjchem.5b00049Suche in Google Scholar PubMed

93. Liu, S., Huang, C.-W., Yap, L.-P., Park, R., Shan, H., Li, Z., Conti, P. S.: The efficient synthesis and biological evaluation of novel Bi-functionalized sarcophogine for 64Cu radiopharmaceuticals. Theranostics 2(6), 589 (2012).10.7150/thno.4295Suche in Google Scholar PubMed PubMed Central

94. Paterson, B. M., Buncic, G., McInnes, L. E., Roselt, P., Cullinane, C., Binns, D. S., Jeffery, C. M., Price, R. I., Hicks, R. J., Donnelly, P. S.: Bifunctional 64Cu-labelled macrobicyclic cage amine isothiocyanates for immuno-positron emission tomography. Dalton Trans. 44, 4901 (2015).10.1039/C4DT02983FSuche in Google Scholar

95. Heskamp, S., Raave, R., Boerman, O., Rijpkema, M., Goncalves, V., Denat, F.: 89Zr-immuno-positron emission tomography in oncology: state-of-the-art 89Zr radiochemistry. Bioconjugate Chem. 28, 2211 (2017).10.1021/acs.bioconjchem.7b00325Suche in Google Scholar PubMed PubMed Central

96. Holland, J. P., Divilov, V., Bander, N. H., Smith-Jones, P. M., Larson, S. M., Lewis, J. S.: 89Zr-DFO-J591 for immunoPET imaging of prostate-specific membrane antigen (PSMA) expression in vivo. J. Nucl. Med. 51, 1293 (2010).10.2967/jnumed.110.076174Suche in Google Scholar PubMed PubMed Central

97. Bhatt, N. B., Pandya, D. N., Wadas, T. J.: Recent advances in zirconium-89 chelator development. Molecules 23, 638 (2018).10.3390/molecules23030638Suche in Google Scholar PubMed PubMed Central

98. Patra, M., Bauman, A., Mari, C., Fischer, C. A., Blacque, O., Haussinger, D., Gasser, G., Mindt, T. L.: An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem. Commun. (Camb.) 50, 11523 (2014).10.1039/C4CC05558FSuche in Google Scholar

99. Vugts, D. J., Klaver, C., Sewing, C., Poot, A. J., Adamzek, K., Huegli, S., Mari, C., Visser, G. W., Valverde, I. E., Gasser, G.: Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. Eur. J. Nucl. Med. Mol. Imaging 44, 286 (2017).10.1007/s00259-016-3499-xSuche in Google Scholar PubMed PubMed Central

100. Allott, L., Da Pieve, C., Meyers, J., Spinks, T., Ciobota, D. M., Kramer-Marek, G., Smith, G.: Evaluation of DFO-HOPO as an octadentate chelator for zirconium-89. Chem. Commun. (Camb.) 53, 8529 (2017).10.1039/C7CC03572ASuche in Google Scholar

101. Stradling, G. N., Gray, S. A., Moody, J. C., Hodgson, A., Raymond, K. N., Durbin, P. W., Rodgers, S. J., White, D. L., Turowski, P. N.: The Efficacy of DFO-HOPO, DTPA-Dx and DTPA for enhancing the excretion of plutonium and americium from the rat. Int. J. Radiat Biol. 59, 1269 (1991).10.1080/09553009114551131Suche in Google Scholar PubMed

102. Deri, M. A., Ponnala, S., Zeglis, B. M., Pohl, G., Dannenberg, J., Lewis, J. S., Francesconi, L. C.: Alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3, 4, 3-(LI-1, 2-HOPO). J. Med. Chem. 57, 4849 (2014).10.1021/jm500389bSuche in Google Scholar PubMed PubMed Central

103. Deri, M. A., Ponnala, S., Kozlowski, P., Burton-Pye, B. P., Cicek, H. T., Hu, C., Lewis, J. S., Francesconi, L. C.: p-SCN-Bn-HOPO: A superior bifunctional chelator for 89Zr immunoPET. Bioconjugate Chem. 26, 2579 (2015).10.1021/acs.bioconjchem.5b00572Suche in Google Scholar PubMed PubMed Central

104. Carroll, V., Demoin, D. W., Hoffman, T. J., Jurisson, S. S.: Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. Radiochim. Acta. 100, 653 (2012).10.1524/ract.2012.1964Suche in Google Scholar PubMed PubMed Central

105. Heeg, M. J., Jurisson, S. S.: The role of inorganic chemistry in the development of radiometal agents for cancer therapy. Acc. Chem. Res. 32, 1053 (1999).10.1021/ar980002cSuche in Google Scholar

106. Jürgens, S., Herrmann, W. A., Kühn, F. E.: Rhenium and technetium based radiopharmaceuticals: development and recent advances. J. Organomet. Chem. 751, 83 (2014).10.1016/j.jorganchem.2013.07.042Suche in Google Scholar

107. Jurisson, S. S., Lydon, J. D.: Potential technetium small molecule radiopharmaceuticals. Chem. Rev. 99, 2205 (1999).10.1021/cr980435tSuche in Google Scholar PubMed

108. Schwochau, K.: Technetium radiopharmaceuticals – fundamentals, synthesis, structure, and development. Angew. Chem. Int. Ed. 33, 2258 (1994).10.1002/anie.199422581Suche in Google Scholar

109. Mahmood, A., Jones, A. G., Technetium Radiopharmaceuticals. In: M. J. Welch, C. S. Redvanly (Eds.), Handbook of Radiopharmaceuticals, John Wiley & Sons, Ltd (2005), p. 323.10.1002/0470846380.ch10Suche in Google Scholar

110. Volkert, W. A., Hoffman, T. J.: Therapeutic radiopharmaceuticals. Chem. Rev. 99, 2269 (1999).10.1021/cr9804386Suche in Google Scholar PubMed

111. Liu, G., Hnatowich, D. J.: Labeling biomolecules with radiorhenium – a review of the bifunctional chelators. Anti-cancer Agents Med. Chem. 7, 367 (2007).10.2174/187152007780618144Suche in Google Scholar PubMed PubMed Central

112. Bartholoma, M. D., Louie, A. S., Valliant, J. F., Zubieta, J.: Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important raidometals for the molecular imaging era. Chem. Rev. 110, 2903 (2010).10.1021/cr1000755Suche in Google Scholar PubMed

113. Dilworth, J. R., Parrott, S. J.: The biomedical chemistry of technetium and rhenium. Chem. Soc. Rev. 27, 43 (1998).10.1039/a827043zSuche in Google Scholar

114. Blower, P. J.: A nuclear medicine chocholate box: the periodic table of nuclear medicine. Dalton Trans. 44, 4819 (2015).10.1039/C4DT02846ESuche in Google Scholar

115. Mei, L., Wang, Y., Chu, T.: 99mTc/Re complexes bearing bisnitroimidazole or mononitroimidazole as potential bioreductive markers for tumor: synthesis, physicochemical characterization and biological evaluation. Eur. J. Med. Chem. 58, 50 (2012).10.1016/j.ejmech.2012.09.042Suche in Google Scholar PubMed

116. Wang, X., Cui, M., Yu, P., Li, Z., Yang, Y., Jia, H., Liu, B.: Synthesis and biological evaluation of novel technetium-99m labeled phenylbenzoxazole derivatives as potential imaging probes for beta-amyloid plaques in brain. Bioorg. Med. Chem. Lett. 22, 4327 (2012).10.1016/j.bmcl.2012.05.010Suche in Google Scholar PubMed

117. Sun, W., Chu, T.: In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting. Bioorg. Med. Chem. Lett. 25, 4453 (2015).10.1016/j.bmcl.2015.09.004Suche in Google Scholar PubMed

118. Demoin, D. W., Dame, A. N., Minard, W. D., Gallazzi, F., Seickman, G. L., Rold, T. L., Bernskoetter, N., Fassbender, M. E., Hoffman, T. J., Deakyne, C. A., Jurisson, S. S.: Monooxorhenium(V) complexes with 222-N2S2 MAMA ligands for bifunctional chelator agents: Syntheses and preliminary in vivo evaluation. Nucl. Med. Biol. 43, 802 (2016).10.1016/j.nucmedbio.2016.08.017Suche in Google Scholar PubMed PubMed Central

119. Li, X., Wu, A., Xue, Q., Fang, Y., Liu, J., Zhang, H., Bao, H.: Synthesis and biological evaluation of fatty acids containing 99mTc-oxo and 99mTc-nitrido for myocardial metabolism imaging. J. Radioanal. Nucl. Chem. 307, 1429 (2015).10.1007/s10967-015-4232-0Suche in Google Scholar

120. Ocampo-Garcia, B. E., Santos-Cuevas, C. L., De Leon-Rodriguez, L. M., Garcia-Becerra, R., Ordaz-Rosado, D., Luna-Guitierrez, M. A., Jimenez-Mancilla, N. P., Romero-Pina, M. E., Ferro-Flores, G.: Design and biological evaluation of 99mTc-N2S2-Tat(49-57)-c(RGDyK): a hybrid radiopharmaceutical for tumors expressing alpha(v)beta(3) integrins. Nucl. Med. Biol. 40, 481 (2013).10.1016/j.nucmedbio.2013.01.003Suche in Google Scholar PubMed

121. Rasaneh, S., Dadras, M. R.: The potential of SOCTA as a chelator for radiolabeling of trastuzumab with 99mTc. J. Radioanal. Nucl. Chem. 307, 1353 (2015).10.1007/s10967-015-4314-zSuche in Google Scholar

122. Meszaros, L. K., Dose, A., Biagini, S. C. G., Blower, P. J.: Hydrazinonicotinic acid (HYNIC) – coordination chemistry and applications in radiopharmaceutical chemistry. Inorg. Chim. Acta 363, 1059 (2010).10.1016/j.ica.2010.01.009Suche in Google Scholar

123. North, A. J., Karas, J. A., Ma, M. T., Blower, P. J., Ackermann, U., White, J. M., Donnelly, P. S.: Rhenium and technetium-oxo complexes with thioamide derivatives of pyridylhydrazine bifunctional chelators conjugated to the tumour targeting peptides octreotate and cyclic-RGDfK. Inorg. Chem. 56, 9725 (2017).10.1021/acs.inorgchem.7b01247Suche in Google Scholar PubMed PubMed Central

124. Clarke, C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S.: Pyridylthiocarbazide complexes of rhenium with potential radiopharmaceutical applications. Dalton Trans. 2402 (2004).10.1039/b406439aSuche in Google Scholar

125. Einrem, R. F., Braband, H., Fox, T., Vazquez-Lima, H., Alberto, R., Ghosh, A.: Synthesis and molecular structure of 99Tc corroles. Chemistry 22, 18747 (2016).10.1002/chem.201605015Suche in Google Scholar PubMed

126. Einrem, R. F., Gagnon, K. J., Alemayehu, A. B., Ghosh, A.: Metal-ligand misfits: facile access to rhenium-oxo corroles by oxidative metalation. Chemistry 22, 517 (2016).10.1002/chem.201504307Suche in Google Scholar PubMed

127. Zaragoza, J. P., Siegler, M. A., Goldberg, D. P.: Rhenium(V)-oxo corrolazines: isolating redox-active ligand reactivity. Chem. Commun. (Camb.) 52, 167 (2016).10.1039/C5CC07956JSuche in Google Scholar

128. Schweyen, P., Brandhorst, K., Hoffmann, M., Wolfram, B., Zaretzke, M. K., Broring, M.: Viking helmet corroles: activating inert oxidometal corroles. Chemistry 23, 13897 (2017).10.1002/chem.201703721Suche in Google Scholar PubMed

129. Zuckman, S. A., Freeman, G. M., Troutner, D. E., Volkert, W. A., Holmes, R. A., van der Veer, D. G., Barefield, E. K.: Preparation and X-ray structure of trans-Dioxo(1,4,8,11-tetraazacyclotetradecane)technetium(V) perchlorate hydrate. Inorg. Chem. 20, 2386 (1981).10.1021/ic50222a006Suche in Google Scholar

130. Lock, C. J. L., Turner, G.: A Reinvestigation of dioxobis(ethylenediamine)rhenium(V) chloride and dioxotetrakis(pyridine)rhenium(V) chloride hydrate. Acta Cryst. B34, 923 (1978).10.1107/S0567740878004367Suche in Google Scholar

131. Blake, A. J., Greig, J. A., Schroder, M.: Rhenium complexes of tetra-aza macrocycles: the synthesis and single-crystal X-ray structure of trans-[Re(O)2(cyclam)]Cl·2(BPh3·H2O). J. Chem. Soc. Dalton Trans. 2645 (1988).10.1039/DT9880002645Suche in Google Scholar

132. Nock, B. A., Charalambidis, D., Sallegger, W., Waser, B., Mansi, R., Nicolas, G. P., Ketani, E., Nikolopoulou, A., Fani, M., Reubi, J.-C., Maina, T.: New gastrin releasing peptide receptor-directed [99mTc]demobesin 1 mimics: synthesis and comparative evaluation. J. Med. Chem. 61, 3138 (2018).10.1021/acs.jmedchem.8b00177Suche in Google Scholar

133. Jurisson, S. S., Dancey, K., McPartlin, M., Tasker, P. A., Deutsch, E.: Synthesis, characterization, and electrochemical properties of technetium complexes containing both tetradentate Schiff base and monodentate tertiary phosphine ligands: single-crystal structure of trans-(N, N′-ethylenebis (acetylacetone iminato)) bis-(triphenylphosphine) technetium (III) hexafluorophosphate. Inorg. Chem. 23, 4743 (1984).10.1021/ic00194a063Suche in Google Scholar

134. Bandoli, G., Mazzi, U., Wilcox, B. E., Jurisson, S., Deutsch, E.: Synthesis and characterization of technetium (V) complexes with tridentate schiff base ligands. X-ray crystal structure of chloro [N-(2-hydroxyphenyl) salicylideneiminato] oxotechnetium (V). Inorg. Chim. Acta 95, 217 (1984).10.1016/S0020-1693(00)87470-8Suche in Google Scholar

135. Jurisson, S., Lindoy, L. F., Dancey, K. P., McPartlin, M., Tasker, P. A., Uppal, D. K., Deutsch, E.: New oxotechnetium (V) complexes of N, N′-ethylenebis (acetylacetone imine), N, N′-ethylenebis (salicylideneamine), and o-phenylenebis (salicylideneamine). X-ray structures of the complexes of N, N′-ethylenebis (acetylacetone imine) and N, N′-ethylenebis (salicylideneamine). Inorg. Chem. 23, 227 (1984).10.1021/ic00170a021Suche in Google Scholar

136. Rossetti, C., Vanoli, G., Paganelli, G., Kwiatkowski, M., Zito, F., Colombo, F., Bonino, C., Carpinelli, A., Casati, R., Deutsch, K., Marmion, M., Woulfe, S. R., Lunghi, F., Deutsch, E., Fazio, F.: Human biodistribution, dosimetry and clinical use of technetium(III)-99m-Q12. J. Nucl. Med. 35, 1571 (1994).Suche in Google Scholar

137. Marmion, M. E., Woulfe, S. R., Neumann, W., Nosco, D. L., Deutsch, E.: Preparation and characterization of technetium complexes with Schiff base and phosphine coordination. 1. Complexes of technetium-99g and-99m with substituted acac2en and trialkyl phosphines (where acac2en= N, N′-ethylenebis [acetylacetone iminato]). Nucl. Med. Biol. 26, 755 (1999).10.1016/S0969-8051(99)00040-2Suche in Google Scholar

138. Benny, P. D., Barnes, C. L., Piekarski, P. M., Lydon, J. D., Jurisson, S. S.: Synthesis and characterization of novel rhenium(V) tetradentate N2O2 schiff base monomer and dimer complexes. Inorg. Chem. 42, 6519 (2003).10.1021/ic030240qSuche in Google Scholar PubMed

139. Benny, P. D., Green, J. L., Engelbrecht, H. P., Barnes, C. L., Jurisson, S. S.: Reactivity of rhenium(V) oxo schiff base complexes with phosphine ligands: rearrangement and reduction reactions. Inorg. Chem. 44, 2381 (2005).10.1021/ic048670jSuche in Google Scholar PubMed

140. Rotsch, D. A., Reinig, K. M., Weis, E. M., Taylor, A. B., Barnes, C. L., Jurisson, S. S.: Novel rhenium(III, IV, and V) tetradentate N2O2 Schiff base mononuclear and dinuclear complexes. Dalton Trans. 42, 11614 (2013).10.1039/c3dt51198gSuche in Google Scholar PubMed PubMed Central

141. Baumeister, J. E., Reinig, K. M., Barnes, C. L., Kelley, S. P., Jurisson, S. S.: Technetium and rhenium schiff base compounds for nuclear medicine: syntheses of rhenium analogues to 99mTc-furifosmin. Inorg. Chem. 57, 12920 (2018).10.1021/acs.inorgchem.8b02156Suche in Google Scholar PubMed

142. Spies, H., Glaser, M., Pietzsch, H.-J., Hahn, F. E., Kintzel, O., Luegger, T.: Trigonal-bipyramidal technetium and rhenium complexes with tetradentate tripodal NS3 ligands. Angew. Chem. 106, 1416 (1994).10.1002/ange.19941061310Suche in Google Scholar

143. Glaser, M., Spies, H., Lügger, T., Ekkehardt Hahn, F.: Formation of a rhenium(III) carbonyl complex by electrophilic attack on rhenium isocyanides. Synthesis and molecular structure of {Re[N(CH2CH2S)3][CNC(CH3)3]} and {Re[N(CH2CH2)3](CO)}. J. Organomet. Chem. 503, C32-C35 (1995).10.1016/0022-328X(95)05769-LSuche in Google Scholar

144. Spies, H., Glaser, M., Pietzsch, H. J., Hahn, F. E., Lugger, T.: Synthesis and reactions of trigonal-bipyramidal rhenium and technetium complexes with a tripodal, tetradentate NS3 ligand. Inorg. Chim. Acta 240, 465 (1995).10.1016/0020-1693(95)04571-6Suche in Google Scholar

145. Gniazdowska, E., Kozminski, P., Fuks, L.: Synthesis, radiochemistry and stability of the conjugates of technetium-99m complexes with substance P. J. Radioanal. Nucl. Chem. 298, 1171 (2013).10.1007/s10967-013-2526-7Suche in Google Scholar

146. Gniazdowska, E., Kozminski, P., Bankowski, K., Luniewski, W., Krolicki, L.: Synthesis, physicochemical and biological evaluation of technetium-99m labeled lapatinib as a novel potential tumor imaging agent of HER-2 positive breast cancer. Eur. J. Med. Chem. 87, 493 (2014).10.1016/j.ejmech.2014.09.080Suche in Google Scholar PubMed

147. Gniazdowska, E., Kozminski, P., Bankowski, K., Ochman, P.: 99mTc-labeled vasopressin peptide as a radiopharmaceutical for small-cell lung cancer (SCLC) diagnosis. J. Med. Chem. 57, 5986 (2014).10.1021/jm500272rSuche in Google Scholar PubMed

148. Kozminski, P., Gniazdowska, E.: Synthesis and in vitro/in vivo evaluation of novel mono- and trivalent technetium-99m labeled ghrelin peptide complexes as potential diagnostic radiopharmaceuticals. Nucl. Med. Biol. 42, 28 (2015).10.1016/j.nucmedbio.2014.08.012Suche in Google Scholar PubMed

149. Sakhare, N., Das, S., Mathur, A., Mirapurkar, S., Paradkar, S., Sarma, H. D., Sachdev, S. S.: Synthesis and characterization of a novel 99mTc analogue of *I-mIBG showing affinity for nor-epinephrine transport positive tumors. RSC Adv. 6, 64902 (2016).10.1039/C6RA11217JSuche in Google Scholar

150. Vats, K., Mallia, M. B., Mathur, A., Sarma, H. D., Banerjee, S.: ‘4+1’ mixed ligand strategy for the preparation of 99mTc-radiopharmaceuticals for hypoxia detecting applications. ChemistrySelect 2, 2910 (2017).10.1002/slct.201700150Suche in Google Scholar

151. Gniazdowska, E., Kozminski, P., Wasek, M., Bajda, M., Sikora, J., Mikiciuk-Olasik, E., Szymanski, P.: Synthesis, physicochemical and biological studies of technetium-99m labeled tacrine derivative as a diagnostic tool for evaluation of cholinesterase level. Bioorg. Med. Chem. 25, 912 (2017).10.1016/j.bmc.2016.12.004Suche in Google Scholar PubMed

152. Seifert, S., Kunstler, J. U., Schiller, E., Pietzsch, H. J., Pawelke, B., Bergmann, R., Spies, H.: Novel procedures for preparing 99mTc(III) complexes with tetradentate/monodentate coordination of varying lipophilicity and adaptation to 188Re analogues. Bioconjugate Chem. 15, 856 (2004).10.1021/bc0300798Suche in Google Scholar PubMed

153. Schiller, E., Seifert, S., Tisato, F., Refosco, F., Kraus, W., Spies, H., Pietzsch, H.-J.: Mixed-ligand rhenium-188 complexes with tetradentate/monodentate NS3/P (‘4+1’) coordination: relation of structure with antioxidation stability. Bioconjugate Chem. 16, 634 (2005).10.1021/bc049745aSuche in Google Scholar PubMed

154. Kunstler, J. U., Bergmann, R., Gniazdowska, E., Kozminski, P., Walther, M., Pietzsch, H. J.: Impact of functionalized coligands on the pharmacokinetics of 99mTc(III) ‘4+1’ mixed-ligand complexes conjugated to bombesin. J. Inorg. Biochem. 105, 1383 (2011).10.1016/j.jinorgbio.2011.07.002Suche in Google Scholar PubMed

155. Alberto, R., Schibli, R., Egli, A., Schubiger, A. P., Abram, U., Kaden, T. A.: A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4] in aqueous solution and its reaction with a bifunctional ligand. J. Am. Chem. Soc. 120, 7987 (1998).10.1021/ja980745tSuche in Google Scholar

156. Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U., Schubiger, P. J. B. C.: Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)−tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem. 11, 345 (2000).10.1021/bc990127hSuche in Google Scholar PubMed

157. Kluba, C. A., Mindt, T. L.: Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals. Molecules 18, 3206 (2013).10.3390/molecules18033206Suche in Google Scholar PubMed PubMed Central

158. Mindt, T., Struthers, H., Garcia-Garayoa, E., Desbouis, D., Schibli, R.: Strategies for the development of novel tumor targeting technetium and rhenium radiopharmaceuticals. Chimia 61, 725 (2007).10.2533/chimia.2007.725Suche in Google Scholar

159. Camacho, X., García, M. F., Calzada, V., Fernández, M., Chabalgoity, J. A., Moreno, M., De Aguiar, R. B., Alonso, O., Gambini, J. P., Chammas, R.: [99mTc(CO)3]+ Radiolabeled bevacizumab: in vitro and in vivo evaluation in a melanoma model. Oncology 84, 200 (2013).10.1159/000338961Suche in Google Scholar PubMed

160. Chen, W.-J., Yen, C.-L., Lo, S.-T., Chen, K.-T., Lo, J.-M.: Direct 99mTc labeling of Herceptin (trastuzumab) by 99mTc(I) tricarbonyl ion. Appl. Radiat. Isot. 66, 340 (2008).10.1016/j.apradiso.2007.09.007Suche in Google Scholar PubMed

161. Pandey, U., Kameswaran, M., Sarma, H. D., Samuel, G.: 99mTc carbonyl DTPA–rituximab: preparation and preliminary bioevaluation. Appl. Radiat. Isot. 86, 52 (2014).10.1016/j.apradiso.2013.12.036Suche in Google Scholar PubMed

162. Stopar, T. G., Mlinaric-Rascan, I., Fettich, J., Hojker, S., Mather, S.: 99mTc-rituximab radiolabelled by photo-activation: a new non-Hodgkin’s lymphoma imaging agent. Eur. J. Nucl. Med. Mol. Imaging 33, 53 (2006).10.1007/s00259-005-1838-4Suche in Google Scholar PubMed

163. Egli, A., Alberto, R., Tannahill, L., Schibli, R., Abram, U., Schaffland, A., Waibel, R., Tourwé, D., Jeannin, L., Iterbeke, K.: Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J. Nucl. Med. 40, 1913 (1999).Suche in Google Scholar

164. Meares, C. F., Moi, M. K., Diril, H., Kukis, D. L., McCall, M. J., Deshpande, S. V., DeNardo, S. J., Snook, D., Epenetos, A. A.: Macrocyclic chelates of radiometals for diagnosis and therapy. Br. J. Cancer Suppl. 10, 21 (1990).Suche in Google Scholar

165. Carpenet, H., Cuvillier, A., Monteil, J., Quelven, I.: Anti-CD20 Immunoglobulin G radiolabeling with a 99mTc-tricarbonyl core: in vitro and in vivo evaluations. PLoS One 10, e0139835 (2015).10.1371/journal.pone.0139835Suche in Google Scholar PubMed PubMed Central

166. Biechlin, M. L., d’Hardemare, A. d. M., Fraysse, M., Gilly, F. N., Bonmartin, A.: Improvement in radiolabelling proteins with the 99mTc-tricarbonyl-core [99mTc(CO)3]+, by thiol-derivatization with iminothiolane: application to γ-globulins and annexin V. J. Label. Compd. Radiopharm. 48, 873 (2005).10.1002/jlcr.999Suche in Google Scholar

167. Ellis, B. L., Gorshkov, N. I., Lumpov, A. A., Miroslavov, A. E., Yalfimov, A. N., Gurzhiy, V. V., Suglobov, D. N., Braddock, R., Adams, J. C., Smith, A.-M., Prescott, M. C., Sharma, H. L.: Synthesis, characterization and pre-clinical evaluation of 99mTc-tricarbonyl complexes as potential myocardial perfusion imaging agents. J. Label. Compd. Radiopharm. 56, 700 (2013).10.1002/jlcr.3106Suche in Google Scholar PubMed

168. Pitchumony, T. S., Banevicius, L., Janzen, N., Zubieta, J., Valliant, J. F.: Isostructural nuclear and luminescent probes derived from [2+1] rhenium(I)/technetium(I) organometallic complexes. Inorg. Chem. 52, 13521 (2013).10.1021/ic401972gSuche in Google Scholar PubMed

169. Hayes, T. R., Bottorff, S. C., Slocumb, W. S., Barnes, C. L., Clark, A. E., Benny, P. D.: Influence of bidentate ligand donor types on the formation and stability in 2 + 1 fac-[MI(CO)3]+ (M=Re, 99mTc) complexes. Dalton Trans. 46, 1134 (2017).10.1039/C6DT04282ASuche in Google Scholar PubMed PubMed Central

170. Connell, T. U., Hayne, D. J., Ackermann, U., Tochon-Danguy, H. J., White, J. M., Donnelly, P. S.: Rhenium and technetium tricarbonyl complexes of 1,4-Substituted pyridyl-1,2,3-triazole bidentate ‘click’ ligands conjugated to a targeting RDG peptide. J. Label. Compd. Radiopharm. 57, 262 (2014).10.1002/jlcr.3169Suche in Google Scholar PubMed

171. North, A. J., Hayne, D. J., Schieber, C., Price, K., White, A. R., Crouch, P. J., Rigopoulos, A., O’Keefe, G. J., Tochon-Danguy, H., Scott, A. M., White, J. M., Ackermann, U., Donnelly, P. S.: Toward hypoxia-selective rhenium and technetium tricarbonyl complexes. Inorg. Chem. 54, 9594 (2015).10.1021/acs.inorgchem.5b01691Suche in Google Scholar PubMed

172. Hayes, T. R., Lyon, P. A., Barnes, C. L., Trabue, S., Benny, P. D.: Influence of functionalized pyridine ligands on the radio/chemical behavior of [MI(CO)3]+ (M=Re and 99mTc) 2 + 1 complexes. Inorg. Chem. 54, 1528 (2015).10.1021/ic502520xSuche in Google Scholar PubMed

173. Chan, C. Y., Pellegrini, P. A., Greguric, I., Barnard, P. J.: Rhenium and technetium tricarbonyl complexes of N-heterocyclic carbene ligands. Inorg. Chem. 53, 10862 (2014).10.1021/ic500917sSuche in Google Scholar PubMed

174. Shegani, A., Triantis, C., Nock, B. A., Maina, T., Kiritsis, C., Psycharis, V., Raptopoulou, C., Pirmettis, I., Tisato, F., Papadopoulos, M. S.: Rhenium(I) tricarbonyl complexes with (2-hydroxyphenyl)diphenylphosphine as PO bidentate ligand. Inorg. Chem. 56, 8175 (2017).10.1021/acs.inorgchem.7b00894Suche in Google Scholar PubMed

175. Mundwiler, S., Kündig, M., Ortner, K., Alberto, R.: A new [2 + 1] mixed ligand concept based on [99(m)Tc(OH2)3(CO)3]+: a basic study. Dalton Trans. 1320 (2004).10.1039/B400220BSuche in Google Scholar

176. Kolb, H. C., Finn, M., Sharpless, K. B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001).10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5Suche in Google Scholar

177. Diez-Gonzalez, S., Marion, N., Nolan, S. P.: N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 109, 3612 (2009).10.1021/cr900074mSuche in Google Scholar

178. Díez-González, S., Nolan, S. P.: Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding. Coord. Chem. Rev. 251, 874 (2007).10.1016/j.ccr.2006.10.004Suche in Google Scholar

179. Schibli, R., Schubiger, A. P.: Current use and future potential of organometallic radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging 29, 1529 (2002).10.1007/s00259-002-0900-8Suche in Google Scholar

180. Bolzati, C., Tisato, F., Refosco, F., Bandoli, G., Dolmella, A.: Uncommon anionic dioxorhenium(V) and neutral monooxorhenium(V) mixed-ligand complexes containing heterofunctionalized phosphine ligands: syntheses and structural characterization. Inorg. Chem. 35, 6221 (1996).10.1021/ic960404lSuche in Google Scholar

181. Nock, B., Maina, T., Tisato, F., Raptopoulou, C. P., Terzis, A., Chiotellis, E.: Oxorhenium phosphinophenolato complexes with model peptide fragments: synthesis, characterization, and stability considerations. Inorg. Chem. 39, 5197 (2000).10.1021/ic000154fSuche in Google Scholar

182. Nock, B., Maina, T., Tisato, F., Papadopoulos, M., Raptopoulou, C. P., Terzis, A., Chiotellis, E.: Novel six-coordinate oxorhenium “3 + 2” mixed-ligand complexes carrying the SNS/PO donor atom set: synthesis and characterization. Inorg. Chem. 38, 4197 (1999).10.1021/ic9905796Suche in Google Scholar

183. Morais, M., Paulo, A., Gano, L., Santos, I., Correia, J. D. G.: Target-specific Tc(CO)3+_complexes for in vivo imaging. J. Organomet. Chem. 744, 125 (2013).10.1016/j.jorganchem.2013.05.050Suche in Google Scholar

184. Morais, G. R., Paulo, A., Santos, I.: Organometallic complexes for SPECT imaging and/or radionuclide therapy. Organometallics 31, 5693 (2012).10.1021/om300501dSuche in Google Scholar

185. Correia, J. D., Paulo, A., Santos, I.: Re and Tc complexes with pyrazolyl-containing chelators: from coordination chemistry to target-specific delivery of radioactivity. Curr. Radiopharm. 2, 277 (2009).10.2174/1874471010902040277Suche in Google Scholar

186. Alberto, R.: Organometallic Radiopharmaceuticals. In: Medicinal Organometallic Chemistry, Springer (2010), p. 219.10.1007/978-3-642-13185-1_9Suche in Google Scholar

187. Papagiannopoulou, D., Makris, G., Tsoukalas, C., Raptopoulou, C. P., Terzis, A., Pelecanou, M., Pirmettis, I., Papadopoulos, M. S.: Rhenium (I) and technetium (I) fac-M (NSO)(CO)3 (M= Re, 99mTc) tricarbonyl complexes, with a tridentate NSO bifunctional agent: synthesis, structural characterization, and radiochemistry. Polyhedron 29, 876 (2010).10.1016/j.poly.2009.10.009Suche in Google Scholar

188. Makris, G., Radford, L., Gallazzi, F., Jurisson, S., Hennkens, H., Papagiannopoulou, D.: Synthesis and evaluation of fac-[99mTc/Re(CO)3]+ complexes with a new (N, S, N) bifunctional chelating agent: the first example of a fac-[Re(CO)3(N,S,N-sst2-ANT)] complex bearing a somatostatin receptor antagonist peptide. J. Organomet. Chem. 805, 100 (2016).10.1016/j.jorganchem.2016.01.005Suche in Google Scholar

189. Radford, L., Gallazzi, F., Watkinson, L., Carmack, T., Berendzen, A., Lewis, M. R., Jurisson, S. S., Papagiannopoulou, D., Hennkens, H. M.: Synthesis and evaluation of a Tc-99m tricarbonyl-labeled somatostatin receptor-targeting antagonist peptide for imaging of neuroendocrine tumors. Nucl. Med. Biol. 47, 4 (2017).10.1016/j.nucmedbio.2016.12.002Suche in Google Scholar PubMed

190. Nunes, P., Morais, G. R., Palma, E., Silva, F., Oliveira, M. C., Ferreira, V. F., Mendes, F., Gano, L., Miranda, H. V., Outeiro, T. F.: Isostructural Re(I)/99mTc(I) tricarbonyl complexes for cancer theranostics. Org. Biomol. Chem. 13, 5182 (2015).10.1039/C5OB00124BSuche in Google Scholar PubMed

191. Giglio, J., Dematteis, S., Fernandez, S., Cerecetto, H., Rey, A.: Synthesis and evaluation of a new 99mTc(I)-tricarbonyl complex bearing the 5-nitroimidazol-1-yl moiety as potential hypoxia imaging agent. J. Label. Compd. Radiopharm. 57, 403 (2014).10.1002/jlcr.3195Suche in Google Scholar PubMed

192. Hillier, S. M., Maresca, K. P., Lu, G., Merkin, R. D., Marquis, J. C., Zimmerman, C. N., Eckelman, W. C., Joyal, J. L., Babich, J. W.: 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J. Nucl. Med. 54, 1369 (2013).10.2967/jnumed.112.116624Suche in Google Scholar PubMed

193. Vallabhajosula, S., Nikolopoulou, A., Babich, J. W., Osborne, J. R., Tagawa, S. T., Lipai, I., Solnes, L., Maresca, K. P., Armor, T., Joyal, J. L.: 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J. Nucl. Med. 55, 1791 (2014).10.2967/jnumed.114.140426Suche in Google Scholar PubMed

194. Liu, T., Gan, Q., Zhang, J.: Macrocyclic triamine derived glucose analogues for 99mTc(CO)3 labeling: synthesis and biological evaluation as potential tumor-imaging agents. Chem. Biol. Drug. Des. 89, 277 (2017).10.1111/cbdd.12784Suche in Google Scholar PubMed

195. Duan, X., Liu, T., Zhang, Y., Zhang, J.: Synthesis and biological evaluation of novel 99mTc(CO)3-labeled thymidine analogs as potential probes for tumor proliferation imaging. Molecules 21, 510 (2016).10.3390/molecules21040510Suche in Google Scholar

196. Makris, G., Radford, L. L., Kuchuk, M., Gallazzi, F., Jurisson, S. S., Smith, C. J., Hennkens, H. M.: NOTA and NODAGA [99mTc]Tc- and [186Re]Re-tricarbonyl complexes: radiochemistry and first example of a [99mTc]Tc-NODAGA somatostatin receptor-targeting bioconjugate. Bioconjugate Chem. 29, 4040 (2018).10.1021/acs.bioconjchem.8b00670Suche in Google Scholar

197. Frei, A., Spingler, B., Alberto, R.: Multifunctional cyclopentadiene as a scaffold for combinatorial bioorganometallics in [(η5-C5H2R1R2R3)M(CO)3] (M=Re, 99mTc) piano-stool type complexes. Chem. Eur. J. 24, 10156 (2018).10.1002/chem.201801271Suche in Google Scholar

198. Hatanaka, M., Tanaka, Y., Himeda, Y., Ueda, I.: A single-step synthesis of 4-hydroxycyclopentenones from 3-ethoxycarbonyl-2-oxo-propylidenetriphenylphosphorane and glyoxals. Tetrahedron Lett. 34, 4837 (1993).10.1016/S0040-4039(00)74103-7Suche in Google Scholar

199. Jia, J., Cui, M., Kai, J. Liu, B.: 2-Phenylbenzothiazole conjugated with cyclopentadienyl tricarbonyl [CpM(CO)3] (M=Re, 99mTc) complexes as potential imaging probes for β-amyloid plaques. Dalton Trans. 44, 6406 (2015).10.1039/C5DT00023HSuche in Google Scholar

200. Li, X., Chen, S., Liu, Z., Zhao, Z., Lu, J.: Syntheses and evaluations of the methoxy modified 99mTc-labeled triphenyl phosphonium cations: Potential radiometallic probes for multidrug resistance detection. J. Organomet. Chem. 871, 28 (2018).10.1016/j.jorganchem.2018.07.003Suche in Google Scholar

201. Benz, M., Braband, H., Schmutz, P., Halter, J., Alberto, R.: From Tc(VII) to Tc(I); facile syntheses of bis-arene complexes [99mTc(arene)2]+ from pertechnetate. Chem. Sci. 6, 165 (2015).10.1039/C4SC02461CSuche in Google Scholar

202. Meola, G., Braband, H., Schmutz, P., Benz, M., Spingler, B., Alberto, R.: Bis-arene complexes [Re(η6-arene)2]+ as highly stable bioorganometallic scaffolds. Inorg. Chem. 55, 11131 (2016).10.1021/acs.inorgchem.6b01748Suche in Google Scholar PubMed

203. Meola, G., Braband, H., Jordi, S., Fox, T., Blacque, O., Spingler, B., Alberto, R.: Structure and reactivities of rhenium and technetium bis-arene sandwich complexes [M(η6-arene)2]+. Dalton Trans. 46, 14631 (2017).10.1039/C7DT02072DSuche in Google Scholar

204. Meola, G., Braband, H., Hernandez-Valdes, D., Gotzmann, C., Fox, T., Spingler, B., Alberto, R.: A mixed-ring sandwich complex from unexpected ring contraction in [Re(η6-C6H5Br)(η6-C6R6)](PF6). Inorg. Chem. 56, 6297 (2017).10.1021/acs.inorgchem.7b00394Suche in Google Scholar PubMed

205. Hernández-Valdés, D., Meola, G., Braband, H., Spingler, B., Alberto, R.: Direct Synthesis of non-alkyl functionalized bis-arene complexes of rhenium and 99(m)technetium. Organometallics 37, 2910 (2018).10.1021/acs.organomet.8b00494Suche in Google Scholar

206. DeGraffenreid, A. J., Feng, Y., Wycoff, D. E., Morrow, R., Phipps, M. D., Cutler, C. S., Ketring, A. R., Barnes, C. L., Jurisson, S. S.: Dithiol aryl arsenic compounds as potential diagnostic and therapeutic radiopharmaceuticals. Inorg. Chem. 55, 8091 (2016).10.1021/acs.inorgchem.6b01175Suche in Google Scholar PubMed

207. DeGraffenreid, A. J., Feng, Y., Barnes, C. L., Ketring, A. R., Cutler, C. S., Jurisson, S. S.: Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals. Nucl. Med. Biol. 43, 288 (2016).10.1016/j.nucmedbio.2016.01.005Suche in Google Scholar PubMed PubMed Central

208. Ellison, P. A., Barnhart, T. E., Chen, F., Hong, H., Zhang, Y., Theuer, C. P., Cai, W., Nickles, R. J., DeJesus, O. T.: High yield production and radiochemical isolation of isotopically pure arsenic-72 and novel radioarsenic labeling strategies for the development of theranostic radiopharmaceuticals. Bioconjugate Chem. 27, 179 (2016).10.1021/acs.bioconjchem.5b00592Suche in Google Scholar PubMed PubMed Central

209. Feng, Y., DeGraffenreid, A. J., Phipps, M. D., Rold, T. L., Okoye, N. C., Gallazzi, F. A., Barnes, C. L., Cutler, C. S., Ketring, A. R., Hoffman, T. J., Jurisson, S. S.: A trithiol bifunctional chelate for 72,77As: A matched pair theranostic complex with high in vivo stability. Nucl. Med. Biol. 61, 1 (2018).10.1016/j.nucmedbio.2018.03.001Suche in Google Scholar PubMed

210. Jahn, M., Radchenko, V., Filosofov, D., Hauser, H., Eisenhut, M., Rosch, F., Jennewein, M.: Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. Radiochim. Acta 98, 807 (2010).10.1524/ract.2010.1783Suche in Google Scholar

Received: 2018-12-14
Accepted: 2019-06-25
Published Online: 2019-07-20
Published in Print: 2019-09-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: 150 years of the Periodic Table of Chemical Elements
  3. Part A: Actinides and Transactinides
  4. Evolution of the periodic table through the synthesis of new elements
  5. Nuclear and chemical characterization of heavy actinides
  6. Direct mass measurements and ionization potential measurements of the actinides
  7. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
  8. The periodic table – an experimenter’s guide to transactinide chemistry
  9. Synthesis and properties of isotopes of the transactinides
  10. Part B: Nuclear Energy
  11. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
  12. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
  13. Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
  14. Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
  15. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
  16. What do we know about actinides-proteins interactions?
  17. Part C: Medical Radionuclides
  18. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
  19. Radiochlorine: an underutilized halogen tool
  20. Radiobromine and radioiodine for medical applications
  21. Radiochemical aspects of alpha emitting radionuclides for medical application
  22. Chelators and metal complex stability for radiopharmaceutical applications
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3090/pdf
Button zum nach oben scrollen