Startseite Naturwissenschaften Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates

  • Shayan Shahbazi EMAIL logo , C. J. Oldham , Austin D. Mullen , John D. Auxier II und Howard L. Hall
Veröffentlicht/Copyright: 13. April 2019

Abstract

This work reports thermodynamic characterizations of lanthanide β-diketonates for use in nuclear fission product separation. Adsorption and sublimation enthalpies have been shown to be linearly correlated, therefore there is motivation to determine sublimation thermodynamics. An isothermal thermogravimetric analysis method is employed on fourteen lanthanide chelates for the ligands 2,2,6,6-tetramethyl-3,5-heptanedione and 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione to determine sublimation enthalpies. No linear trend is seen across the series; values show a cyclical nature, possibly indicating a greater influence of chemisorption for some complexes and less of a role of physisorption in dictating adsorption differences between lanthanides in the same series. This is in line with previous reports in terms of the chromatographic separation order of the lanthanides. The results reported here can be used to manipulate separations parameters and column characteristics to better separate these lanthanide chelates. Fourteen chelates of the ligand 1,1,1-trifluoro-2,4-pentanedione are also thermally characterized but found to not sublime and be undesirable for this method. Additionally, all chelates are characterized by constant heating thermogravimetric analysis coupled with mass spectrometry, melting point analysis, elemental analysis and FTIR.

Award Identifier / Grant number: DE-NA0001983

Award Identifier / Grant number: 2012-DN- 130-NF0001

Funding statement: This work was performed under Office of Defense Programs, Funder Id: http://dx.doi.org/10.13039/100006127, grant number DE-NA0001983 from the Stewardship Science Academic Alliances (SSAA) Program of the National Nuclear Security Administration (NNSA). This material is also based upon work supported by the U.S. Department of Homeland Security under Science and Technology Directorate, Funder Id: http://dx.doi.org/10.13039/100008287, Grant Award Number, 2012-DN- 130-NF0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security, Department of Energy or NNSA. The authors wish to thank Katrina Pangilinan in the Polymer Characterization Lab at the University of Tennessee at Knoxville, Dawn Riegner and Jordan Johnson at the U.S. Military Academy, and Dr. George Schweitzer in the Department of Chemistry at the University of Tennessee at Knoxville. Finally, the authors wish to thank Adam Stratz, Daniel Harding and Jeff Lux in the Department of Nuclear Engineering at the University of Tennessee at Knoxville.

References

1. Anastas, P. T., Warner, J. C.: Green Chemistry: Theory and Practice, Oxford University Press, Oxford (1998).Suche in Google Scholar

2. Fallis, A.: Efficient utilization of elements. J. Chem. Inf. Model. 53, 1689 (2013).10.1021/ci400128mSuche in Google Scholar

3. Schädel, M., Shaughnessy, D. A.: The Chemistry of Superheavy Elements, Springer, New York (2013).10.1007/978-3-642-37466-1Suche in Google Scholar

4. Zvára, I.: The Inorganic Radiochemistry of Heavy Elements, Springer Netherlands, Dordrecht (2008).10.1007/978-1-4020-6602-3Suche in Google Scholar

5. Even, J., Yakushev, A., Dullmann, C. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schadel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Turler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491 (2014).10.1126/science.1255720Suche in Google Scholar PubMed

6. 111th Congress: Nuclear Forensics and Attribution Act. Congress, USA (2010).Suche in Google Scholar

7. Moody, K. J., Grant, P. M., Hutcheon, I. D.: Nuclear Forensic Analysis, CRC Press, Boca Raton (2014).Suche in Google Scholar

8. Fedchenko, V.: The role of nuclear forensics in nuclear security. Strateg. Anal. 38, 230 (2014).10.1080/09700161.2014.884442Suche in Google Scholar

9. Shahbazi, S., Stratz, S. A., Auxier, J. D., Hanson, D. E., Marsh, M. L., Hall, H. L.: Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates. J. Radioanal. Nucl. Chem. 311, 617 (2017).10.1007/s10967-016-5005-0Suche in Google Scholar PubMed

10. Eisentraut, K. J., Sievers, R. E.: Volatile rare earth chelates. J. Am. Chem. Soc. 87, 5254 (1965).10.1021/ja00950a051Suche in Google Scholar

11. Sievers, R. E., Ponder, B. W., Morris, M. L., Moshier, R. W.: Gas phase chromatography of metal chelates of acetylacetone, trifluoroacetylacetone, and hexafluoroacetylacetone. Inorg. Chem. 2, 693 (1963).10.1021/ic50008a006Suche in Google Scholar

12. Springer, C. S., Meek, D. W., Sievers, R. E.: Rare earth chelates of 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-,6-octanedione. Inorg. Chem. 6, 1105 (1966).10.1021/ic50052a009Suche in Google Scholar

13. Auxier, J. D., Jordan, J. A., Stratz, S. A., Shahbazi, S., Hanson, D. E., Cressy, D., Hall, H. L.: Thermodynamic analysis of volatile organometallic fission products. J. Radioanal. Nucl. Chem. 307, 1621 (2016).10.1007/s10967-015-4653-9Suche in Google Scholar PubMed

14. Berg, E. W., Acosta, J. J. C.: Fractional sublimation of the B-diketone chelates of the lanthanide and related elements. Anal. Chim. Acta. 40, 101 (1968).10.1016/S0003-2670(00)86700-8Suche in Google Scholar

15. Auxier, J. D., Hanson, D. E., Marsh, M. L., Jones, S. J., Penchoff, D. A., Jenkins, D. M., Hall, H. L.: Gas-phase thermochromatographic separations of fission and activation products. In: Annual Meeting of the Institute for Nuclear Materials Management (2014).Suche in Google Scholar

16. Hanson, D. E., Garrison, J. R., Hall, H. L.: Assessing thermochromatography as a separation method for nuclear forensics: current capability vis-a-vis forensic requirements. J. Radioanal. Nucl. Chem. 289, 213 (2011).10.1007/s10967-011-1063-5Suche in Google Scholar

17. Eichler, B., Türler, A., Gäggeler, H. W.: Thermochemical characterization of seaborgium compounds in gas adsorption chromatography. J. Phys. Chem. A. 103, 9296 (1999).10.1021/jp9917751Suche in Google Scholar

18. Düllmann, C. E., Eichler, B., Eichler, R., Gäggeler, H. W., Türler, A.: On the stability and volatility of group 8 tetroxides, MO4 (M=ruthenium, osmium, and hassium (Z=108)). J. Phys. Chem. B. 106, 6679 (2002).10.1021/jp0257146Suche in Google Scholar

19. Coats, A. W., Redfern, J. P.: Kinetic parameters from thermogravimetric data. Nature 201, 68 (1964).10.1038/201068a0Suche in Google Scholar

20. Horowitz, H. H., Metzger, G.: A new analysis of thermogravimetric traces. Anal. Chem. 35, 1464 (1963).10.1021/ac60203a013Suche in Google Scholar

21. Freeman, E. S., Carroll, B.: The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J. Phys. Chem. 62, 394 (1958).10.1021/j150562a003Suche in Google Scholar

22. Flynn, J. H., Wall, L. A.: General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 70A, 487 (1966).10.6028/jres.070A.043Suche in Google Scholar

23. Sadeek, S. A.: Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes. J. Mol. Struct. 753, 1 (2005).10.1016/j.molstruc.2005.06.011Suche in Google Scholar

24. Langmuir, I.: The vapor pressure of metallic tungsten. Phys. Rev. 2, 329 (1913).10.1103/PhysRev.2.329Suche in Google Scholar

25. Ashcroft, S. J.: The measurement of enthalpies of sublimation by thermogravimetry. Thermochim. Acta. 2, 512 (1971).10.1016/0040-6031(71)80021-7Suche in Google Scholar

26. Fahlman, B. D., Barron, A. R.: Substituent effects on the volatility of metal β-diketonates. Adv. Mater. Opt. Electron. 10, 223 (2000).10.1002/1099-0712(200005/10)10:3/5<223::AID-AMO411>3.0.CO;2-MSuche in Google Scholar

27. Gillan, E. G., Bott, S. G., Barron, A. R.: Volatility studies on gallium chalcogenide cubanes: thermal analysis and determination of sublimation enthalpies. Chem. Mater. 9, 796 (1997).10.1021/cm960485jSuche in Google Scholar

28. Price, D. M., Hawkins, M.: Calorimetry of two disperse dyes using thermogravimetry. Thermochim. Acta. 315, 19 (1998).10.1016/S0040-6031(98)00272-XSuche in Google Scholar

29. Turnipseed, S. B., Barkley, R. M., Sievers, R. E.: Synthesis and characterization of alkaline-earth-metal beta-diketonate complexes used as precursors for chemical vapor deposition of thin film superconductors. Inorg. Chem. 30, 1164 (1991).10.1021/ic00006a003Suche in Google Scholar

30. Binnemans, K.: Rare-earth beta-diketonates. In: K. A. Gschneidner Jr., J.-C. G. Bünzli, V. K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Elsevier B.V., Amsterdam (2005).10.1016/S0168-1273(05)35003-3Suche in Google Scholar

31. Leskela, M., Niinisto, L., Nykanen, E., Soininen, P., Tiitta, M.: Thermoanalytical and mass spectrometric studies on volatile beta-diketone chelates. Thermochim. Acta. 175, 91 (1991).10.1016/0040-6031(91)80250-MSuche in Google Scholar

32. McAleese, J., Plakatouras, J. C., Steele, B. C. H.: The use of Ce(fod)4 as a precursor for the growth of ceria films by metal–organic chemical vapour deposition. Thin Solid Films. 280, 152 (1996).10.1016/0040-6090(95)08193-3Suche in Google Scholar

33. Johnson, A. T., Parker, T. G., Dickens, S. M., Pfeiffer, J. K., Oliver, A. G., Wall, D., Wall, N. A., Finck, M. R., Carney, K. P.: Synthesis and crystal structures of volatile neptunium(IV) β-diketonates. Inorg. Chem. 56, 13553 (2017).10.1021/acs.inorgchem.7b02290Suche in Google Scholar PubMed

34. Moeller, T., Kremers, H. E.: The basicity characteristics of scandium, yttrium, and the rare earth elements. Chem. Rev. 37, 97 (1945).10.1021/cr60116a003Suche in Google Scholar

35. Westmore, J. B., Reimer, M. L. J., Reichert, C.: Ionization energies of metal chelates. Acetylacetonates, trifluoroacetylacetonates, and hexafluoroacetylacetonates of trivalent metals of the first transition series. Can. J. Chem. 59, 1797 (1981).10.1139/v81-268Suche in Google Scholar

36. Hubert-Pfalzgraf, L. G.: Metal alkoxides and β-diketonates as precursors for oxide and non-oxide thin films. Appl. Organomet. Chem. 6, 627 (1992).10.1002/aoc.590060805Suche in Google Scholar

37. Stratz, S. A., Jones, S. A., Oldham, C. J., Mullen, A. D., Jones, A. V., Auxier, J. D., Hall, H. L.: Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis. J. Radioanal. Nucl. Chem. 310, 1273 (2016).10.1007/s10967-016-4920-4Suche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3085).


Received: 2018-11-16
Accepted: 2019-03-11
Published Online: 2019-04-13
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3085/html?lang=de
Button zum nach oben scrollen