Startseite Naturwissenschaften Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media

  • Andrei Egorin EMAIL logo , Eduard Tokar , Marina Palamarchuk , Arseniy Portnyagin , Mikhail Tutov , Daria Mis’ko , Anastasia Kalashnikova , Tatiana Sokolnitskaya und Ivan Tananaev
Veröffentlicht/Copyright: 11. April 2019

Abstract

The present work was devoted to study of sorption parameters of resorcinol-formaldehyde resins synthesized through introduction of an inorganic filler (in amounts of 10 and 25 wt.%) with its subsequent leaching. The surface morphology and composition of ion-exchange resins have been investigated by means of the method of scanning electron microscopy. The effect of internal diffusion on the peculiarities of the ion-exchange process has been determined. It has been revealed that the ion-exchangers destruction upon a prolonged contact with highly alkaline solutions is followed by the decrease of internal diffusion coefficients and selectivity toward Cs-137 micro-quantities. The sorption properties of resins under dynamic conditions at high solution feeding rates have been studied. A sample with the highest efficiency of Cs-137 removal from highly mineralized solutions has been identified.

Acknowledgements

The devices of the Center of Collective Use of Scientific Equipment “Far Eastern Center of Structural Investigations” was used in the present work. This work was supported by Russian Science Foundation (project No. 18-73-10066).

References

1. Logunov, M. V., Karpov, V. I., Druzhinina, N. E., Tananaev, I. G.: Approaches to treatment of highly active pulps accumulated at FSUE PA “Mayak”. Voprosy Radiatsionnoy Bezopasnosti. 1, 15 (2011) [In Russian].Suche in Google Scholar

2. Logunov, M. V., Karpov, V. I., Tananaev, I. G.: Stabilization of thermal-physical conditions of survey of some storage tanks for highly active pulps at FSUE PA “Mayak”. Voprosy Radiatsionnoy Bezopasnosti. 4, 18 (2011) [In Russian].Suche in Google Scholar

3. Improvements of Radioactive Waste Management at WWER Nuclear Power Plants. IAEA-TECDOC–1492. International Atomic Energy Agency, Waste Technology Section, Vienna, Austria, p. 95 (2006).Suche in Google Scholar

4. Prout, W. E., Russell, E. R., Groh, H. J.: Ion exchange absorption of cesium by potassium hexacyanocobalt (II) ferrate (II). J. Inorg. Nucl. Chem. 27, 473 (1965).10.1016/0022-1902(65)80367-0Suche in Google Scholar

5. Milyutin, V. V., Mikheev, S. V., Gelis V. M., Kozlitin E. A.: Sorption of cesium on ferrocyanide sorbents from highly saline solutions. Radiochemistry 51, 298 (2009).10.1134/S1066362209030151Suche in Google Scholar

6. Gibert, O., Valderrama, C., Peterkóva, M., Cortina, J. L.: Evaluation of selective sorbents for the extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis rejected brine. Solvent Extr. Ion Exc. 28, 543 (2010).10.1080/07366299.2010.480931Suche in Google Scholar

7. Ernest, M. V., Bibler, J. P., Whitley, R. D., Wang, N.-H. L.: Development of a carousel ion-exchange process for removal of cesium-137 from alkaline nuclear waste. Ind. Eng. Chem. Res. 36, 2775 (1997).10.1021/ie960729+Suche in Google Scholar

8. Hassan, N. M., Adu-Wusu, K., Marra, J. C.: Resorcinol – formaldehyde adsorption of cesium from Hanford waste solutions, Part I. Batch equilibrium study. J. Radioanal. Nucl. Chem. 262, 579 (2004).10.1007/s10967-004-0479-6Suche in Google Scholar

9. Milyutin, V. V., Mikheev, S. V., Gelis, V. M., Kononenko, O. A.: Coprecipitation of microamounts of cesium with precipitates of transition metal ferrocyanides in alkaline solutions. Radiochemistry 51, 295 (2009).10.1134/S106636220903014XSuche in Google Scholar

10. Sharygin, L. M., Muromskii, A. Y., Moiseev, V. E., Tsekh, A. R., Vaver, A. V.: Sorption purification of liquid radioactive wastes from nuclear power plants. At. Energy 83, 493 (1997).10.1007/BF02418974Suche in Google Scholar

11. Miller, H. S., Kline, G. E.: Reactions of cesium in trace amounts with ion-exchange resins. J. Am. Chem. Soc. 73, 2741 (1951).10.1021/ja01150a091Suche in Google Scholar

12. Hubler, T. L., Franz. J. A., Shaw, W. J., Bryan, S. A., Hallen, R. T., Brown, G. N., Bray, L. A., Linehan, J. C.: Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin. Report. Pacific Northwest National Lab., Richland, Washington, United States (1995).10.2172/110245Suche in Google Scholar

13. Bibler, J. P., Wallace, R. M.: Cesium-specific phenolic ion exchange resin. Patent US 5441991A. Energy department of United States (1992).Suche in Google Scholar

14. Duignan, M. R., Nash, C. A.: Removal of cesium from Savannah river site waste with spherical resorcinol formaldehyde ion exchange resin: experimental tests. Sep. Sci. Technol. 45, 1828 (2010).10.1080/01496395.2010.493105Suche in Google Scholar

15. Raj, K., Prasad, K. K., Bansal, N. K.: Radioactive waste management practices in India. Nucl. Eng. Des. 236, 914 (2006).10.1016/j.nucengdes.2005.09.036Suche in Google Scholar

16. Hubler, T. L., Shaw, W. J., Brown, G. N., Linehan, J. C., Franz, J. A., Hart, T. R., Hogan, M. O.: Chemical derivatization of resorcinol-formaldehyde resin leading to enhanced chemical/oxidative stability of the resin. Report. Pacific Northwest National Lab., Richland, Washington, United States (1996).Suche in Google Scholar

17. Shelkovnikova, L. A., Gavlina, O. T., Ivanov, V. A.: Stability of phenol-formaldehyde ion-exchange sorbents in aqueous solutions. Russ. J. Phys. Chem. 85, 1652 (2011).10.1134/S0036024411090251Suche in Google Scholar

18. Egorin, A. M., Tutov, M. V., Didenko, N. A., Slobodyuk, A. B., Marinin, D. V., Avramenko, V. A.: Effect of parameters of thermal treatment of resorcinol-formaldehyde resins on their chemical stability and Cs-137 uptake efficiency. J. Radioanal. Nucl. Chem. 304, 281 (2015).10.1007/s10967-014-3758-xSuche in Google Scholar

19. Pal, K., Bag, S., Pal, S.: Development of porous ultra high molecular weight polyethylene scaffolds for the fabrication of orbital implant. J. Porous Mat. 15, 53 (2008).10.1007/s10934-006-9051-9Suche in Google Scholar

20. Pal, K., Bag, S., Pal, S.: Development and coating of porous ultra high molecular weight polyethylene plates. Trends Biomater. Artif. Organs. 19, 39 (2005).Suche in Google Scholar

21. Boyd, G. E., Adamson, A. W., Myers, L. S.: The exchange adsorption of ions from aqueous solutions by organic zeolites; kinetics. J. Am. Chem. Soc. 69, 2836 (1947).10.1021/ja01203a066Suche in Google Scholar PubMed

22. Reichenberg, D.: Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 75, 589 (1953).10.1021/ja01099a022Suche in Google Scholar

23. Doğan, M., Özdemir, Y., Alkan, M.: Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigm. 75, 701 (2007).10.1016/j.dyepig.2006.07.023Suche in Google Scholar

Received: 2018-08-11
Accepted: 2019-03-08
Published Online: 2019-04-11
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3046/pdf?lang=de
Button zum nach oben scrollen