Startseite Naturwissenschaften Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties

  • Mohamad Bekhit EMAIL logo , Asmaa Sobhy , Zakaria I. Ali und Sameh M. Gafar
Veröffentlicht/Copyright: 9. Januar 2019

Abstract

A novel high-dose dosimeter based on γ radiation reduction of copper ions and formation of copper metal inside polymer matrix were investigated. γ radiation induced synthesis of copper nanoparticles (CuNPs) in poly vinyl alcohol films were studied by UV-Visible Spectrophotometer, X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The optical absorption spectra showed that the Cu/PVA nanocomposite films have surface plasmon resonance (SPR) of copper nanoparticles which depending on irradiation doses. Upon γ irradiation these films turns its color from faint blue to deep reddish brown depending on metal ion concentration. The XRD pattern and FTIR spectrum confirm the formation of the CuNPs. The response of Cu/PVA nanocomposite dosimeters depends on both the irradiation doses and concentration of copper precursor. The dose range for these films was from 50 to 650 kGy, revealing its important applications for high dose dosimetry. Cu/PVA nanocomposites films exhibit good post-irradiation stability in dark and light.

References

1. Saini, I., Rozra, J., Chandak, N., Aggarwal, S., Sharma, P. K., Sharma, A.: Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139, 802 (2013).10.1016/j.matchemphys.2013.02.035Suche in Google Scholar

2. Li, J., Liu, C.-y., Xie, Z.: Synthesis and surface plasmon resonance properties of carbon-coated Cu and Co nanoparticles. Mater. Res. Bull. 46, 743 (2011).10.1016/j.materresbull.2011.01.014Suche in Google Scholar

3. Soliman, Y. S.: Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat. Phys. Chem. 102, 60 (2014).10.1016/j.radphyschem.2014.04.023Suche in Google Scholar

4. Li, Y.-y., Dong, X., Zhang, H.-q.: CeO2 nanowires aqueous-radiation dosimeter for low dose sensitively detecting. Proc. Eng. 52, 202 (2013).10.1016/j.proeng.2013.02.127Suche in Google Scholar

5. Dhas, N. A., Raj, C. P., Gedanken, A.: Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10(5), 1446 (1998).10.1021/cm9708269Suche in Google Scholar

6. Ida, K., Tomonari, M., Sugiyama, Y., Chujyo, Y., Tokunaga, T., Yonezawa, T., Kuroda, K., Sasaki, K.: Behavior of Cu nanoparticles ink under reductive calcination for fabrication of Cu conductive film. Thin Solid Films. 520, 2789 (2012).10.1016/j.tsf.2011.12.024Suche in Google Scholar

7. Valodkar, M., Modi, S., Pal, A., Thakore, S.: Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater. Res. Bull. 46, 384 (2011).10.1016/j.materresbull.2010.12.001Suche in Google Scholar

8. Yallappa, S., Manjanna, J., Sindhe, M. A., Satyanarayan, N. D., Pramod, S. N., Nagaraja, K.: Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta. Pt. A Mol. Biomol. Spectr. 110, 108 (2013).10.1016/j.saa.2013.03.005Suche in Google Scholar

9. Qing-Ming, L., Yasunami, T., Kuruda, K., Okido, M.: Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans. Nonferr. Met. Soc. China. 22, 2198 (2012).10.1016/S1003-6326(11)61449-0Suche in Google Scholar

10. Lisiecki, I., Pileni, M. P.: Synthesis of copper metallic clusters using reverse micelles as microreactors. Am. Chem. Soc. 115(10), 3887 (1993).10.1021/ja00063a006Suche in Google Scholar

11. Suárez-Cerda, J., Espinoza-Gómez, H., Alonso-Núňez, G., Rivero, I. A., Gochi-Ponce, Y., Flores-López, L. Z.: A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J. Saudi Chem. Soc. 21, 341 (2017).10.1016/j.jscs.2016.10.005Suche in Google Scholar

12. Yeh, M. S., Yang, Y. S., Lee, Y. P., Lee, H. F., Yeh, Y. H., Yeh, C. S.: Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. Phys. Chem. B. 103, 6851 (1999).10.1021/jp984163+Suche in Google Scholar

13. Liu, Z., Bando, Y.: A novel method for preparing copper nanorods and nanowires. Adv. Mater. 15(3), 303 (2003).10.1002/adma.200390073Suche in Google Scholar

14. Yagi, S., Nakanishi, H., Matsubara, E., Matsubara, S., Ichitsubo, T., Hosoya, K.: Formation of Cu nanoparticles by electroless deposition using aqueous CuO suspension. Electrochem. Soc. 155(6), D474 (2008).10.1149/1.2904884Suche in Google Scholar

15. Joshi, S. S., Patil, S. F., Iyer, V., Mahamuni, S.: Radiation induces synthesis and characterization of copper nanoparticles. Nanostruct. Mater. 10(7), 1135 (1998).10.1016/S0965-9773(98)00153-6Suche in Google Scholar

16. Pham, L. Q., Sohn, J. H., Park, J. H., Kang, H. S., Lee, B. C., Kang, Y. S.: Comparative study on the preparation of conductive copper pastes with copper nanoparticles prepared by electron beam irradiation and chemical reduction. Radiat. Phys. Chem. 80, 638 (2011).10.1016/j.radphyschem.2011.01.004Suche in Google Scholar

17. Ali, Z. I., Ghazy, O. A., Meligi, G., Saleh, H. H., Bekhit, M.: Copper nanoparticles: synthesis, characterization and its application as catalyst for p-nitrophenol reduction. J. Inorg. Organo. Polym. Mater. 28, 1195 (2018).10.1007/s10904-018-0780-4Suche in Google Scholar

18. Belloni, J., Mostafavi, M., Remita, H., Marignier, J. L., Delcourt, M. O.: Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New. J. Chem. 22(11), 1239 (1998).10.1039/a801445kSuche in Google Scholar

19. Clifford, D. M., Castano, C. E., Rojas, J. V.: Supported transition metal nanomaterials: nanocomposites synthesized by ionizing radiation. Radiat. Phys. Chem. 132, 52 (2017).10.1016/j.radphyschem.2016.12.001Suche in Google Scholar

20. Abou Taleb, M. F., Abd El-Mohdy, H. L., Abd El-Rehim, H. A.: Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J. Hazard. Mater. 168, 68 (2009).10.1016/j.jhazmat.2009.02.001Suche in Google Scholar PubMed

21. Bhunia, T., Giri, A., Nasim, T., Chattopadhyay, D., Bandyopadhyay, A.: Uniquely different PVA-xanthan gum irradiated membranes as transdermal diltiazem delivery device. Carbohydr. Polym. 95, 252 (2013).10.1016/j.carbpol.2013.02.043Suche in Google Scholar PubMed

22. Mallakpour, S., Dinari, M.: Enhancement in thermal properties of poly(vinyl alcohol) nanocomposites reinforced with Al2O3 nanoparticles. J. Reinf. Plast. Comp. 32(4), 217 (2013).10.1177/0731684412467236Suche in Google Scholar

23. Akhavan, A., Khoylou, F., Ataeivarjovi, E.: Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films. Radiat. Phys. Chem. 138, 49 (2017).10.1016/j.radphyschem.2017.02.057Suche in Google Scholar

24. Cieśla, K., Abramowska, A., Boguski, J., Drewnik, J.: The effect of poly(vinyl alcohol) type and radiation treatment on the properties of starch-poly(vinyl alcohol) films. Radiat. Phys. Chem. 141, 142 (2017).10.1016/j.radphyschem.2017.06.015Suche in Google Scholar

25. Ali, Z. I., Ghazy, O. A., Meligi, G., Saleh, H. H., Bekhit, M.: Radiation-induced synthesis of copper/poly(vinyl alcohol) nanocomposites and their catalytic activity. Adv. Polym. Techn. 37(2), 21675 (2018).10.1002/adv.21675Suche in Google Scholar

26. Tian, K., Liu, C., Yang, H., Ren, X.: In situ synthesis of copper nanoparticles/polystyrene composite. Colloids. Surf. A: Phys. Eng. Asp. 397, 12 (2012).10.1016/j.colsurfa.2012.01.019Suche in Google Scholar

27. Chowdhury, M. N. K., Beg, M. D. H., Khan, M. R., Mina, M. F.: Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres. Mater. Lett. 98, 26 (2013).10.1016/j.matlet.2013.02.024Suche in Google Scholar

28. Bhat, N. V., Nate, M. M., Kurup, M. B., Bambole, V. A., Sabharwal, S.: Effect of γ-radiation on the structure and morphology of polyvinyl alcohol films. Nucl. Instr. Meth. Phys. Res. B 237, 585 (2005).10.1016/j.nimb.2005.04.058Suche in Google Scholar

29. Bisen, D. S., Bhatt, R., Bajpai, A. K., Bajpai, R., Katare, R.: Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications. Mater. Sci. Eng. C. 71, 982 (2017).10.1016/j.msec.2016.11.001Suche in Google Scholar PubMed

30. Chahal, R. P., Mahendia, S., Tomar, A. K., Kumar, S.: SHI irradiated PVA/Ag nanocomposites and possibility of UV blocking. Opt. Mater. 52, 237 (2016).10.1016/j.optmat.2015.12.049Suche in Google Scholar

31. Khatouri, J., Mostafavi, M., Amblard, J., Belloni, J.: Radiation-induced copper aggregates and oligomers. Chem. Phys. Lett. 191, 351 (1992).10.1016/0009-2614(92)85313-YSuche in Google Scholar

32. Eisa, W. H., Abdel-Moneam, Y. K., Shaaban, Y., Abdel-Fattah, A. A., Abou Zeid, A. M.: Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA Matrix. Mater. Chem. Phys. 128, 109 (2011).10.1016/j.matchemphys.2011.02.076Suche in Google Scholar

33. Belloni, J.: Mechanisms of metal nanoparticles nucleation and growth studied by Radiolysis. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.08.001.10.1016/j.radphyschem.2018.08.001Suche in Google Scholar

34. Flores-Rojas, G. G.: Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: a short review. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.08.011.10.1016/j.radphyschem.2018.08.011Suche in Google Scholar

35. Ghoreishian, S. M., Kang, S.-M., Raju, G. S. R., Norouzi, M., Jang, S.-C., Yun, H. J., Lim, S. T., Han, Y.-K., Roh, C., Huh, Y. S.: γ-radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: a review of mechanisms and applications. Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.10.164.10.1016/j.cej.2018.10.164Suche in Google Scholar

36. Nagy, V., Sholom, S. V., Chumak, V. V., Desrosiers, M. F.: Uncertainties in alanine dosimetry in the therapeutic dose range. Appl. Radiat. Isot. 56, 917 (2002).10.1016/S0969-8043(01)00271-8Suche in Google Scholar PubMed

Received: 2018-06-25
Accepted: 2018-12-10
Published Online: 2019-01-09
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3010/pdf
Button zum nach oben scrollen