Chemical effects of nuclear transformations and possible formation of unknown derivatives with N-phenylquinazolinium structure
-
Nadezhda E. Shchepina
, Viktor V. Avrorin , Gennadii A. Badun , Sergey N. Shurov und Roman V. Shchepin
Abstract
Quinazoline derivatives are well known to have a diverse array of therapeutic activities. Unfortunately, “classic” chemical synthesis does not provide an opportunity for the formation of N-phenyl quaternary 1,3-diazinium compounds. A devised nuclear-chemical method of synthesis based on chemical effects of nuclear transformations enables a new way of the direct nitrogen atom phenylation by the nucleogenic (generated by tritium β-decay) phenyl cations in 1,3-diazines, furnishing, based on our prediction, formation of previously unknown derivatives with N-phenyl quaternary quinazolinium scaffold.
References
1. Onium Compounds – Advances in Research and Application. Q. A. Acton (Ed.), Scholarly Editions, Atlanta, Georgia (2013), p. 100.Suche in Google Scholar
2. Hirsch, M., Dhara, S., Diesendruck, C. E.: N-arylation of tertiary amines under mild conditions. Org. Lett. 18, 980 (2016).10.1021/acs.orglett.6b00078Suche in Google Scholar PubMed
3. Arava, S., Diesendruck, C. E.: Strategies for the synthesis of N-arylammonium salts. Synthesis 49, 3535 (2017).10.1055/s-0036-1588868Suche in Google Scholar
4. Aharonovich, S., Gjineci, N., Dekel, D. R., Diesendruck, C. E.: An effective synthesis of N,N-diphenyl carbazolium salts. Synlett 29, 1314 (2018).10.1055/s-0036-1591848Suche in Google Scholar
5. Lv, T., Wang, Z., You, J., Lan, J., Gao, G.: Copper-catalyzed direct aryl quaternization of N-substituted imidazoles to form imidazolium salts. J. Org. Chem. 78, 5723 (2013).10.1021/jo400527rSuche in Google Scholar PubMed
6. Li, S., Yang, F., Lv, T., Lan, J., Gao, G., You, J.: Synthesis of unsymmetrical imidazolium salts by direct quaternization of N-substituted imidazoles using arylboronic acids. Chem. Commun. 50, 3941 (2014).10.1039/c4cc00474dSuche in Google Scholar
7. Carson, T. A.: Dissociation of C6H5T following β−-decay. J. Chem. Phys. 32, 1234 (1960).10.1063/1.1730880Suche in Google Scholar
8. Wexler, S.: Destruction of molecules by nuclear transformations. Science 156, 901 (1967).10.1126/science.156.3777.901Suche in Google Scholar PubMed
9. Cacace, F.: Gaseous carbonium ions from the decay of tritiated molecules. In: V. Gold (Ed.), Advances in Physical Organic Chemistry, Academic Press, London, New York (1970).10.1016/S0065-3160(08)60321-4Suche in Google Scholar
10. Cacace, F.: Nuclear decay techniques in ion chemistry. Science 250, 392 (1990).10.1126/science.250.4979.392Suche in Google Scholar PubMed
11. Nefedov, V. D., Sinotova, E. N., Akulov, G. P., Syreishchikov, V. A.: β−-decay as a method for preparing and studying the reactions of free carbonium ions, radicals, and carbenes. Radiokhimiya 10, 600 (1968).Suche in Google Scholar
12. Nefedov, V. D., Toropova, M. A., Sinotova, E. N.: Radiochemical methods for the preparation of organic derivatives of the elements. Russ. Chem. Rev. 38, 873 (1969).10.1070/RC1969v038n11ABEH001859Suche in Google Scholar
13. Nefedov, V. D., Sinotova, E. N., Toropova, M. A.: Chemical consequences of beta decay in molecular systems. Radiokhimiya 18, 682 (1976).Suche in Google Scholar
14. Speranza, M.: Tritium for generation of carbocations. Chem. Rev. 93, 2933 (1993).10.1021/cr00024a010Suche in Google Scholar
15. Nefedov, V. D., Toropova, M. A., Avrorin, V. V., Lewis, S. B., Mattson, B.: Ion-molecular reactions of free phenylium ions, generated by tritium β-decay with group V–VII elements. Tetrahedron Lett. 41, 5303 (2000).10.1016/S0040-4039(00)00854-6Suche in Google Scholar
16. Shchepina, N. E., Badun, G. A., Nefedov, V. D., Toropova, M. A., Fedoseev, V. M., Avrorin, V. V., Lewis, S. B.: Synthesis of arylhalonium compounds {including (4-methylphenyl) phenylfluoronium} by nuclear-chemical method. Terahedron Lett. 43, 4123 (2002).10.1016/S0040-4039(02)00717-7Suche in Google Scholar
17. Shchepina, N. E., Avrorin, V. V., Badun, G. A.: Nuclear-chemical synthesis of 1,4-diazine quaternary salts. Open J. Synth. Theory Appl. 2, 51 (2013).10.4236/ojsta.2013.22006Suche in Google Scholar
18. Shchepina, N. E., Avrorin, V. V., Badun, G. A., Vasyanin, A. N., Shurov, S. N., Agafonova, I. M.: Investigation of ion-molecular reactions of nucleogenic phenyl cations with 1,4-diazine derivatives. Chem. Heterocycl. Compd. 50, 1595 (2015).10.1007/s10593-014-1629-6Suche in Google Scholar
19. Michael, J. P.: Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 25, 166 (2008).10.1039/B612168NSuche in Google Scholar PubMed
20. Mhaske, S. B., Argade, N. P.: The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron 62, 9787 (2006).10.1016/j.tet.2006.07.098Suche in Google Scholar
21. Nepali, K., Sharma, S., Ojha, R., Dhar, K.: Vasicine and structurally related quinazolines. Med. Chem. Res. 22, 1 (2013).10.1007/s00044-012-0002-5Suche in Google Scholar
22. Suresha, G. P., Prakasha, K. C., Shiva Kumara, K. N., Kapfo, W., Channe Gowda, D.: Design and synthesis of heterocyclic conjugated peptides as novel antimicrobial agents. Int. J. Pept. Res. Ther. 15, 25 (2009).10.1007/s10989-008-9158-8Suche in Google Scholar
23. Antipenko, L., Karpenko, A., Kovalenko, S., Katsev, A., Komarovska-Porokhnyavets, E., Novikov, V., Chekotilo, A.: Synthesis of new 2-thio-[1.2,4]triazolo[1,5-c]quinazoline derivatives and its antimicrobial activity. Chem. Pharm. Bull. 57, 580 (2009).10.1248/cpb.57.580Suche in Google Scholar PubMed
24. Rohini, R., Shanker, K., Reddy, P. M., Ho, Y. P., Ravinder, V.: Mono and bis-6-arylbenzimidazo[1,2-c]quinazolines: a new class of antimicrobial agents. Eur. J. Med. Chem. 44, 3330 (2009).10.1016/j.ejmech.2009.03.022Suche in Google Scholar PubMed
25. Chevalier, J., Mahamoud, A., Baitiche, M., Adam, E., Viveiros, M., Sharandache, A., Militaru, A., Pascu, M. L., Amaral, L., Pages, J.-M.: Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant stains. Int. J. Antimicrob. Agents 36, 164 (2010).10.1016/j.ijantimicag.2010.03.027Suche in Google Scholar PubMed
26. Myangar, K., Raval, J.: Design, synthesis, and in vitro antimicrobial activities of novel azetidinyl-3-quinazolin-4-one hybrids. Med. Chem. Res. 21, 2762 (2012).10.1007/s00044-011-9808-9Suche in Google Scholar
27. Berest, G. G., Voskoboynik, O. Y., Kovalenko, S. I., Nosulenko, I. S., Antypenko, L. M., Antypenko, O. M., Shvets, V. M., Katsev, A. M.: Synthesis of new 6-{[ω-(dialkylamino(heterocyclic)alkyl]thio}-3-R-2H-[1,2,4]triazino[2,3-c]quinazoline-2-ones and evaluation of their anticancer and antimicrobial activities. Sci. Pharm. 80, 37 (2012).10.3797/scipharm.1111-15Suche in Google Scholar PubMed PubMed Central
28. Vashi, R. T., Shelat, C. D., Patel, H.: Synthesis and antifungal activity of quinazoline-4-one derivatives containing 8-hydroxy quinazoline ligand and its transition metal chelates. Der Pharma Chem. 2, 216 (2010).Suche in Google Scholar
29. Mohamed, M. S., Kamel, M. M., Kassem, E. M. M., Abotaleb, N., Abd El-moez, S. I., Ahmed, M. F.: Novel 6,8-dibromo-4(3H)quinazolinone derivatives of antibacterial and antifungal activities. Eur. J. Med. Chem. 45, 3311 (2010).10.1016/j.ejmech.2010.04.014Suche in Google Scholar PubMed
30. Almerico, A. M., Tutone, M., Guarcello, A., Lauria, A.: In vitro and silico studies of polycondensed diazine systems as anti-parasitic agents. Bioorg. Med. Chem. Lett. 22, 1000 (2012).10.1016/j.bmcl.2011.12.004Suche in Google Scholar PubMed
31. Selvam, P., Breitenbach, J. M., Borysko, K. Z., Drach, J. C.: Synthesis, antiviral activity, and cytotoxicity of some novel 2-phenyl-3disubstituted quinazolin-4(3H)-ones. Int. J. Drug Des Discov. 1, 149 (2010).10.1016/j.antiviral.2009.02.128Suche in Google Scholar
32. Madapa, S., Tusi, Z., Mishra, A., Srivastava, K., Pandey, S. K., Tripathi, R., Puri, S. K., Batra, S.: Search for new pharmacophores for antimalarial activity. Part II: synthesis and antimalarial activity of new 6-ureido-4-anilinoquinazolines. Bioorg. Med. Chem. 17, 222 (2009).10.1016/j.bmc.2008.11.005Suche in Google Scholar PubMed
33. Meyynathan, S. N., Ramu, M., Suresh, B.: Synthesis, antimalarial and antibacterial activities of 3-amino acid- and aryl aminosubstituted 2-methyl-3Hquinazolin-4-ones. Med. Chem. Res. 19, 993 (2010).10.1007/s00044-009-9245-1Suche in Google Scholar
34. Kashaw, S. K., Kashaw, V., Mishra, P., Jain, N. K., Stables, J. P.: Synthesis, anticonvulsant and CNS depressant activity of some new bioactive 1-(4-substituted-phenyl)-3(4-oxo-2-phenyl/ethyl-4H-quinazolin-3-yl)-urea. Eur. J. Med. Chem. 44, 4335 (2009).10.1016/j.ejmech.2009.05.008Suche in Google Scholar PubMed
35. Raghavendra, N. M., Thampi, P., Gurubasavarajaswamy, P. M., Sriram, D.: Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones. Arch. Pharm. 340, 635 (2007).10.1002/ardp.200700096Suche in Google Scholar PubMed
36. Patil, A., Ganguly, S., Surana, S.: Synthesis and antiulcer activity of 2-[5-substituted-1-H-benzo (d) imidazol-2-yl sulfinyl]methyl-3-substituted quinazoline-4-(3H) ones. J. Chem. Sci. 122, 443 (2010).10.1007/s12039-010-0052-5Suche in Google Scholar
37. Elansary, A., Kadry, H., Ahmed, E., Sonousi, A.: Design, synthesis and in vitro PDE4 inhibition activity of certain quinazolinone derivatives for treatment of asthma. Med. Chem. Res. 21, 3327 (2012).10.1007/s00044-011-9846-3Suche in Google Scholar
38. Kumar, A., Rajput, C. S., Bhati, S. K.: Synthesis of 3-[40-(p-chloro-phenyl)-thiazol-20-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorg. Med. Chem. 15, 3089 (2007).10.1016/j.bmc.2007.01.042Suche in Google Scholar PubMed
39. Alafeefy, A. M., Kadi, A. A., El-Azab, A. S., Abdel-Hamide, S. G., Dada, M.-H. Y.: Synthesis, analgesic and anti-inflammatory evaluation of some new 3H-quinazolin-4-one derivatives. Arch. Pharm. 341, 377 (2008).10.1002/ardp.200700271Suche in Google Scholar PubMed
40. Hemalatha, K., Girija, K.: Synthesis of some novel 2,3-disubstituted quinazolinones derivatives as analgesic and anti-inflammatory agents. Int. J. Pharm. Pharm. Sci. 3, 103 (2011).Suche in Google Scholar
41. Al-Amiery, A., Kadhum, A., Shamel, M., Satar, M., Khalid, Y., Mohamad, A.: Antioxidant and antimicrobial activities of novel quinazolinones. Med. Chem. Res. 23, 236 (2014).10.1007/s00044-013-0625-1Suche in Google Scholar
42. Birhan, Y., Bekhit, A., Hymete, A.: Synthesis and antileishmanial evaluation of some 2,3-disubstituted-4(3H)-quinazolinone derivatives. Org. Med. Chem. Lett. 4, 10 (2014).10.1186/s13588-014-0010-1Suche in Google Scholar PubMed PubMed Central
43. Liu, G., Yang, S., Song, B., Xue, W., Hu, D., Jin, L., Lu, P.: Microwave assisted synthesis of N-arylheterocyclic substituted-4-aminoquinazoline derivatives. Molecules 11, 272 (2006).10.3390/11040272Suche in Google Scholar PubMed PubMed Central
44. Kundu, K., Mahindarathe, M. P. D., Quintero, M. V., Bao, A., Negrete, G. R.: One-pot reductive cyclization to antitumor quinazoline precursors. ARKIVOC 2, 33 (2008).10.3998/ark.5550190.0009.205Suche in Google Scholar
45. Zhang, Y., Chen, Z., Lou, Y., Yu, Y.: 2,3-Disubstituted 8-arylamino-3H-imidazo[4,5-g] quinazolines: a novel class of antitumor agents. Eur. J. Med. Chem. 44, 448 (2009).10.1016/j.ejmech.2008.01.009Suche in Google Scholar PubMed
46. Castellano, S., Taliani, S., Milite, C., Pugliesi, I., Da Pozzo, E., Rizzetto, E., Bendinelli, S., Costa, B., Cosconati, S., Greco, G., Novellino, E., Sbardella, G., Stefancich, G., Martini, C., Da Settimo, F.: Synthesis and biological evaluation of 4-phenylquinazoline-2-carboxamides designed as a novel class of potent ligands of the translocator protein. J. Med. Chem. 55, 4506 (2012).10.1021/jm201703kSuche in Google Scholar PubMed
47. Selvam, T. P., Kumar, P. V.: Quinazoline marketed drugs – a review. Res. Pharm. 1, 1 (2011).Suche in Google Scholar
48. Wang, D., Gao, F.: Quinazoline derivatives: synthesis and bioactivities. Chem. Cent. J. 7, 95 (2013).10.1186/1752-153X-7-95Suche in Google Scholar PubMed PubMed Central
49. Fleita, D., Mohareb, R., Sakka, O.: Antitumor and antileishmanial evaluation of novel heterocycles derived from quinazoline scaffold: a molecular modeling approach. Med. Chem. Res. 22, 2207 (2013).10.1007/s00044-012-0213-9Suche in Google Scholar
50. Buha, V., Rana, D., Chhabria, M., Chikhalia, K., Mahajan, B., Brahmkshatriya, P., Shah, N.: Synthesis, biological evaluation and QSAR study of series of substituted quinazolines as antimicrobial agents. Med. Chem. Res. 22, 4096 (2013).10.1007/s00044-012-0408-0Suche in Google Scholar
51. Anand, R., Narasimhan, B., Chandran, R., Jayaveera, K.: 7-Chloro-3-(substituted benzylidene/phenyl ethylidene amino)-2-phenylquinazolin-4(3H)-ones: synthesis, antimicrobial and antitubercular evaluation. Med. Chem. Res. 22, 2831 (2013).10.1007/s00044-011-9813-zSuche in Google Scholar
52. Malik, S., Khan, S.: Design and evaluation of new hybrid pharmacophore quinazolino-tetrazoles as anticonvulsant strategy. Med. Chem. Res. 23, 207 (2014).10.1007/s00044-013-0630-4Suche in Google Scholar
53. Zemlak, K., Szczepankiewicz, W., Kula, B., Bieg, T.: Synthesis of 4-arylaminoquinazolines from 2-amino-N′-arylbenzamidines and orthoesters via the Dimroth rearrangement of intermediate quinazolin-4(3H)-imines. Curr. Org. Chem. 22, 2801 (2018).10.2174/1385272823666181126112958Suche in Google Scholar
54. Kaur, N.: Ionic liquids: a versatile medium for the synthesis of six-membered two nitrogen-containing heterocycles. Curr. Org. Chem. 23, 76 (2019).10.2174/1385272823666190111152917Suche in Google Scholar
55. Shchepina, N. E., Avrorin, V. V., Badun, G. A., Lewis, S. B., Ukhanov, S. E.: Preparation of fused N-phenyl-substituted pyridinium derivatives by direct phenylation with nucleogenic phenyl cations. Chem. Heterocycl. Compd. 48, 301 (2012).10.1007/s10593-012-0990-6Suche in Google Scholar
56. Pilyugin, G. T., Krainer, Z. Y.: Phenylsubstituted quinocyanines. Dokl. Akad. Nauk SSSR 8, 609 (1951).Suche in Google Scholar
57. Stadniichuk, N. F., Pilyugin, G. T., Petrenko, O. E.: Reaction of 1-phenylquinolinium salts with Grignard reagent. Zhurnal Obshchei Khimii 40, 1834 (1970).Suche in Google Scholar
58. Shchepina, N. E., Avrorin, V. V., Badun, G. A., Alexandrova, G. A., Ukhanov, S. E., Fedoseev, V. M., Lewis, S. B., Boiko, I. I.: Preparation of N-phenyl-substituted quinolinium derivatives labeled with tritium by chemonuclear synthesis. Chem. Heterocycl. Compd. 45, 796 (2009).10.1007/s10593-009-0359-7Suche in Google Scholar
59. Schmidt, M. S., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Godron, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Widus, T. L., Dupuis, M., Montgomery, J. A.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347 (1993).10.1002/jcc.540141112Suche in Google Scholar
60. Granovsky, A. A. Firefly. Version 8.0.0. http://classic.chem.msu.su/gran/gamess/index.html.Suche in Google Scholar
61. Gilchrist, T. L.: Heterocyclic Chemistry, 3rd ed., Longman, New York (1997).Suche in Google Scholar
62. Friestad, G. K., Branchaud, B. P.: Tetrafluoroboric acid. In: Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, New York (2001).10.1002/047084289X.rt035Suche in Google Scholar
63. Jauregui-Osoro, M., Sunassee, K., Weeks, A. J., Berry, D. J., Paul, R. L., Cleij, M., Banga, J. P., O’Doherty, M. J., Marsden, P. K., Clarke, S. E. M., Ballinger, J. R., Szanda, I., Cheng, S.-Y., Blower, P. J.: Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur. J. Nucl. Med. Mol. Imaging 37, 2108 (2010).10.1007/s00259-010-1523-0Suche in Google Scholar PubMed PubMed Central
64. Armarego, W. L. F.: Quinazolines. In: A. R. Katritzky, A. J. Boulton (Eds.), Advances in Heterocyclic Chemistry, Academic Press, New York (1981).Suche in Google Scholar
65. Bunting, J. W., Meathrel, W. G.: Quaternization of quinazoline with methyl iodide. Can. J. Chem. 48, 3449 (1970).10.1139/v70-576Suche in Google Scholar
66. Albert, A., Goldacre, R., Phillips, J.: The strength of heterocyclic bases. J. Chem. Soc. (Resumed) 2240 (1948).10.1039/jr9480002240Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment
- Determination of 210Po in low-level wild bilberries reference material for quality control assurance in environmental analysis using extraction chromatography and α-particle spectroscopy
- Chemical effects of nuclear transformations and possible formation of unknown derivatives with N-phenylquinazolinium structure
- An approach for the efficient immobilization of 79Se using Fe-OOH modified GMZ bentonite
- Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4−˙ free radicals in slightly acidic simulated atmospheric water
- Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides
- Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites
- Precise volume fraction measurement for three-phase flow meter using 137Cs gamma source and one detector
Artikel in diesem Heft
- Frontmatter
- Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment
- Determination of 210Po in low-level wild bilberries reference material for quality control assurance in environmental analysis using extraction chromatography and α-particle spectroscopy
- Chemical effects of nuclear transformations and possible formation of unknown derivatives with N-phenylquinazolinium structure
- An approach for the efficient immobilization of 79Se using Fe-OOH modified GMZ bentonite
- Kinetics and mechanism of the advanced oxidation process of Cr(III) to Cr(VI) by SO4−˙ free radicals in slightly acidic simulated atmospheric water
- Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides
- Effect of maleic anhydride content on physico-mechanical properties of γ-irradiated waste polypropylene/corn husk fibers bio-composites
- Precise volume fraction measurement for three-phase flow meter using 137Cs gamma source and one detector