Startseite Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs

  • Manmeet Kaur , Mandeep Kaur , Tania Bandopadhyay , Aditi Sharma , Anu Priya , Arvind Singh und Bubun Banerjee EMAIL logo
Veröffentlicht/Copyright: 28. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This chapter describes the importance and activity of a huge number of commercially available naturally occurring, natural product derived or synthetic heterocyclic anti-cancer drugs.


Corresponding author: Bubun Banerjee, Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India, E-mail:

Acknowledgments

Authors are thankful to Prof. Gurmail Singh, Vice-Chancellor, Akal University for his wholehearted encouragement and support. BB is grateful to Akal University and Kalgidhar Trust, Barusahib, India for the financial assistance.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tacar, O, Sriamornsak, P, Dass, CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2012;65:157–70. https://doi.org/10.1111/j.2042-7158.2012.01567.x.Suche in Google Scholar PubMed

2. Oun, R, Moussa, YE, Wheate, NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans 2018;47:6645–53. https://doi.org/10.1039/c8dt00838h.Suche in Google Scholar PubMed

3. Jimeno, J, Faircloth, G, Fernández Sousa-Faro, JM, Scheuer, P, Rinehart, K. New marine derived anticancer therapeutics – a journey from the sea to clinical trials. Mar Drugs 2004;2:14–29. https://doi.org/10.3390/md201014.Suche in Google Scholar

4. Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason Sonochem 2017;35:15–35. https://doi.org/10.1016/j.ultsonch.2016.10.010.Suche in Google Scholar PubMed

5. Kaur, G, Moudgil, R, Shamim, M, Gupta, VK, Banerjee, B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature. Synth Commun 2021;51:1100–20. https://doi.org/10.1080/00397911.2020.1870043.Suche in Google Scholar

6. Kaur, G, Singh, A, Kaur, N, Banerjee, B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. Synth Commun 2021;51:1121–31. https://doi.org/10.1080/00397911.2021.1873383.Suche in Google Scholar

7. Banik, BK, Banerjee, B, Kaur, G, Saroch, S, Kumar, R. Tetrabutylammonium bromide (TBAB) catalyzed synthesis of bioactive heterocycles. Molecules 2020;25:5918. https://doi.org/10.3390/molecules25245918.Suche in Google Scholar PubMed PubMed Central

8. Kaur, G, Devi, P, Thakur, S, Kumar, A, Chandel, R, Banerjee, B. Magnetically separable transition metal ferrites: versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect 2019;4:2181–99. https://doi.org/10.1002/slct.201803600.Suche in Google Scholar

9. Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr Org Chem 2018;22:208–33. https://doi.org/10.2174/1385272821666170703123129.Suche in Google Scholar

10. https://www.webmd.com/drugs/2/index.Suche in Google Scholar

11. Waksman, SA, Woodruff, HB. Bacteriostatic and bactenocidal substances produced by a soil actinomyces. Proc Soc Exp Biol Med 1940;45:609–14. https://doi.org/10.3181/00379727-45-11768.Suche in Google Scholar

12. Venveij, JDH, Pinedo, HM. Antitumor antibiotics. In: Chabner, BA, Collins, JM, editors. Cancer chemotherapy – principles and practice. Philadelphia, PA: Lippincott; 1990:382–396 pp.Suche in Google Scholar

13. Hammer, AS, Couto, G, Ayl, RD, Shank, KA. Treatment of tumor-bearing dogs with actinomycin D. J Vet Intern Med 1994;8:236–9. https://doi.org/10.1111/j.1939-1676.1994.tb03224.x.Suche in Google Scholar PubMed

14. Kamitori, S, Takusagawa, F. Crystal structure of the 2:1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D. J Mol Biol 1992;225:445–56. https://doi.org/10.1016/0022-2836(92)90931-9.Suche in Google Scholar PubMed

15. Escobar, PF, Lurain, JR, Singh, DK, Bozorgi, K, Fishman, DA. Treatment of high-risk gestational trophoblastic neoplasis with etoposide, methotrexate, actinomycin D, cyclophosphamide, and vincristine chemotherapy. Gynecol Oncol 2003;91:552–7. https://doi.org/10.1016/j.ygyno.2003.08.028.Suche in Google Scholar PubMed

16. Adekenov, SM, Mukhametzhanov, MN, Kagarlitskii, AD, Kupriyanov, AN. Arglabin, a new sesquiterpene lactone from Artemisia glabella. Chem Nat Compd 1982;18:623–4. https://doi.org/10.1007/bf00575063.Suche in Google Scholar

17. Lone, SH, Bhat, KA, Khuroo, MA. Arglagin: from isolation to antitumor evaluation. Chem Biol Interact 2015;240:180–98. https://doi.org/10.1016/j.cbi.2015.08.015.Suche in Google Scholar PubMed

18. He, W, Lai, R, Lin, Q, Huang, Y, Wang, L. Arglabin is a plant sesquiterpene lactone that exerts potent anticancer effects on human oral squamous cancer cells via mitochondrial apoptosis and downregulation of the mTOR/PI3K/Akt signaling pathway to inhibit tumor growth in vivo. JBUON 2018;23:1679–85.Suche in Google Scholar

19. Umezawa, H, Maeda, K, Takeuchi, T, Okami, Y. New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 1966;19:200–9.Suche in Google Scholar

20. Levi, JA, Raghavan, D, Harvey, V, Thompson, D, Sandeman, T, Gill, G, et al.. The importance of bleomycin in combination chemotherapy for good-prognosis germ cell carcinoma. J Clin Oncol 1993;11:1300–5. https://doi.org/10.1200/jco.1993.11.7.1300.Suche in Google Scholar PubMed

21. Einhorn, LH. Curing metastatic testicular cancer. Proc Natl Acad Sci USA 2002;99:4592–5. https://doi.org/10.1073/pnas.072067999.Suche in Google Scholar PubMed PubMed Central

22. Sikic, BI, Rozencweig, M, Carter, SK. Bleomycin chemotherapy. Orlando, Florida: Academic; 1985.Suche in Google Scholar

23. Bayer, RA, Gaynor, ER, Fisher, RI. Bleomycin in non-Hodgkin’s lymphoma. Semin Oncol 1992;19:46–52.Suche in Google Scholar

24. Sleijfer, S. Bleomycin-induced pneumonitis. Chest 2001;120:617–24. https://doi.org/10.1378/chest.120.2.617.Suche in Google Scholar PubMed

25. Tanjore, H, Xu, XC, Polosukhin, VV, Degryse, AL, Li, B, Han, W, et al.. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 2009;180:657–65. https://doi.org/10.1164/rccm.200903-0322oc.Suche in Google Scholar PubMed PubMed Central

26. Yamamoto, T. Bleomycin and the skin. Br J Dermatol 2006;155:869–75. https://doi.org/10.1111/j.1365-2133.2006.07474.x.Suche in Google Scholar PubMed

27. Hata, T, Koga, F, Sano, Y, Kanamori, K, Matsumae, A, Sugawara, R, et al.. Carzinophilin, a new tumor inhibitory substance produced by Streptomyces. J Antibiotics 1954;7A:107–12.Suche in Google Scholar

28. Onda, M, Konda, Y, Hatano, A, Hata, T, Omura, S. Structure of carzinophilin. IV. Structure elucidation by nuclear magnetic resonance spectroscopy. Chem Pharm Bull 1984;32:2995–3002. https://doi.org/10.1248/cpb.32.2995.Suche in Google Scholar PubMed

29. Armstrong, RW, Salvati, ME, Nguyen, M. Novel interstrand cross-links induced by the antitumor antibiotic carzinophilin/azinomycin B. J Am Chem Soc 1992;114:3144–5. https://doi.org/10.1021/ja00034a074.Suche in Google Scholar

30. Coleman, RS. Total synthesis of the azinomycin family of antitumor agents. Strat Tactics Org Synth 2004;5:51–88. https://doi.org/10.1016/s1874-6004(04)80025-x.Suche in Google Scholar

31. Lown, JW, Begleiter, A, Johnson, D, Morgan, AR. Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay. Can J Biochem 1976;54:110–9. https://doi.org/10.1139/o76-018.Suche in Google Scholar PubMed

32. Boiron, M, Jacquillat, C, Wei, M, Thomas, M, Bernard, J. Treatment of acute granulocytic leukemia with rubidomycin. Pathol Biol 1967;15:921–4.Suche in Google Scholar

33. Jacquillat, C, Najean, Y, Tanzer, R, Weil, M, Boiron, M, Bernard, J. Treatment of acute lymphoblastic leukemia with rubidomycin. Pathol Biol 1967;15:913–8.Suche in Google Scholar

34. Vetrivel, KS, Dharmalingam, K. Isolation and characterization of stable mutants of Streptomyces peucetius defective in daunorubicin biosynthesis. J Genet 2001;80:31–8. https://doi.org/10.1007/bf02811416.Suche in Google Scholar

35. Edwardson, DW, Narendrula, R, Chewchuk, S, Mispel-Beyer, K, Jonathan, PJ, Mapletoft, et al.. Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines. Curr Drug Metabol 2015;16:412–26. https://doi.org/10.2174/1389200216888150915112039.Suche in Google Scholar PubMed PubMed Central

36. Arcamone, F, Cassinelli, G, Fantini, G, Grein, A, Orezzi, P, Pol, C, et al.. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 1969;11:1101–10. https://doi.org/10.1002/bit.260110607.Suche in Google Scholar PubMed

37. Primeau, AJ, Rendon, A, Hedley, A, Lilge, L, Tannock, IF. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 2005;11:8782–8. https://doi.org/10.1158/1078-0432.ccr-05-1664.Suche in Google Scholar

38. Shi, M, Ho, K, Keating, A, Shoichet, MS. Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv Funct Mater 2009;19:1689–96. https://doi.org/10.1002/adfm.200801271.Suche in Google Scholar

39. Madduri, K, Kennedy, J, Rivola, G, Inventi-Solari, A, Filippini, S, Zanuso, G, et al.. Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat Biotechnol 1998;16:69–74. https://doi.org/10.1038/nbt0198-69.Suche in Google Scholar PubMed

40. Kolahkaj, FF, Derakhshandeh, K, Khaleseh, F, Azandaryani, AH, Mansouri, K, Khazaei, M. Active targeting carrier for breast cancer treatment: monoclonal antibody conjugated epirubicin loaded nanoparticle. J Drug Deliv Sci Technol 2019;53:101136. https://doi.org/10.1016/j.jddst.2019.101136.Suche in Google Scholar

41. Ormrod, D, Holm, K, Goa, K, Spencer, C. Epirubicin: a review of its efficacy as adjuvant therapy and in the treatment of metastatic disease in breast cancer. Drugs Aging 1999;15:389–416. https://doi.org/10.2165/00002512-199915050-00006.Suche in Google Scholar PubMed

42. Goebal, M. Oral idarubin- an anthracycline derivative with unique properties. Ann Hematol 1993;66:33–43.10.1007/BF01737687Suche in Google Scholar PubMed

43. Visani, G, Isidori, A, Minotti, G. Anthracycline cardiotoxicity. In: Viselka, J, editor. Cardiomyopathies – from basic research to clinical management. Rijeka, Croatia: Intech Open Access Publishers; 2012.10.5772/29826Suche in Google Scholar

44. Twelves, CJ. Oral idarubicin in solid tumour chemotherapy. Clin Drug Invest 1995;9:39–54. https://doi.org/10.2165/00044011-199500092-00007.Suche in Google Scholar

45. Hollingshead, LM, Faulds, D. Idarubicin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs 1991;42:690–719. https://doi.org/10.2165/00003495-199142040-00010.Suche in Google Scholar PubMed

46. Gibson, M, Nur-e-alam, M, Lipata, F, Oliveira, MA, Rohr, J. Characterization of kinetics and products of the baeyer-villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug mithramycin from Streptomyces argillaceus. J Am Chem Soc 2005;127:17594–5. https://doi.org/10.1021/ja055750t.Suche in Google Scholar PubMed

47. Koller, C, Miller, D. Preliminary observations on the therapy of the myeloid blast phase of chronic granulocytic leukemia with plicamycin and hydroxyurea. N Engl J Med 1986;315:1433–8. https://doi.org/10.1056/nejm198612043152301.Suche in Google Scholar

48. Duverger, V, Murphy, AM, Sheenhan, D, England, K, Cotter, TG, Hayes, I, et al.. The anticancer drug mithramycin A sensitises tumour cells to apoptosis induced by tumour necrosis factor (TNF). Br J Cancer 2004;90:2025–31. https://doi.org/10.1038/sj.bjc.6601824.Suche in Google Scholar PubMed PubMed Central

49. Crooke, ST, Bradner, WT. Mitomycin C: a review. Cancer Treat Rev 1976;3:121–39. https://doi.org/10.1016/s0305-7372(76)80019-9.Suche in Google Scholar PubMed

50. Wakaki, S, Marumo, H, Tomioka, K, Shimizu, G, Kato, E, Kamada, H, et al.. Isolation of new fractions of antitumor mitomycins. Antibiot Chemother 1958;8:228–40.Suche in Google Scholar

51. Fukuyama, T, Yang, L. Practical total synthesis of (&)-mitomycin C. J Am Chem Soc 1989;111:8303–4. https://doi.org/10.1021/ja00203a055.Suche in Google Scholar

52. Bradner, WT, Mitomycin, C. A clinical update. Cancer Treat Rev 2001;27:35–50. https://doi.org/10.1053/ctrv.2000.0202.Suche in Google Scholar PubMed

53. Ishida, N, Miyazaki, K, Kumagai, K, Rikimaru, M. Neocarzinostatin, an antitumor antibiotic of high molecular weight isolation, physicochemical properties and biological activities. J Antibiotics, – Ser A 1965;18:63–76.Suche in Google Scholar

54. Hall, SA, Knight, J, Broughton, A, Benjamin, S, McKelvey, E. Clinical pharmacology of the anticancer polypeptide neocarzinostatin. Cancer Chemother Pharmacol 1983;10:200–4. https://doi.org/10.1007/BF00255763.Suche in Google Scholar PubMed

55. Myers, AG, Liang, J, Hammond, M, Harrington, PM, Wu, Y, Kuo, EY. Total synthesis of (+)-neocarzinostatin chromophore. J Am Chem Soc 1998;120:5319–20. https://doi.org/10.1021/ja980588y.Suche in Google Scholar

56. Petrelli, F, Borgonov, K, Barni, S. Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel. Expert Opin Pharmacother 2010;11:1413–32. https://doi.org/10.1517/14656561003796562.Suche in Google Scholar PubMed

57. Mekhail, TM, Markman, M. Paclitaxel in cancer therapy. Expert Opin Pharmacother 2002;3:755–66. https://doi.org/10.1517/14656566.3.6.755.Suche in Google Scholar PubMed

58. Spencer, CM, Faulds, D. Paclitaxel a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 1994;48:794–847. https://doi.org/10.2165/00003495-199448050-00009.Suche in Google Scholar PubMed

59. Lyseng-Williamson, KA, Fenton, C. Docetaxel a review of its use in metastatic breast cancer. Drugs 2005;65:2513–31. https://doi.org/10.2165/00003495-200565170-00007.Suche in Google Scholar PubMed

60. Xia, Y, Luo, F, Shang, Y, Chen, P, Lu, Y, Wang, C. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 2017;24:1479–89. https://doi.org/10.1016/j.chembiol.2017.09.001.Suche in Google Scholar PubMed

61. Baker, DC, Putt, SR. A total synthesis of pentostatin, the potent inhibitor of adenosine deaminase. J Am Chem Soc 1979;101:6127–8. https://doi.org/10.1021/ja00514a048.Suche in Google Scholar

62. Brogden, RN, Sorkin, EM. Pentostatin a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in lymphoproliferative disorders. Drugs 1993;46:652–77. https://doi.org/10.2165/00003495-199346040-00006.Suche in Google Scholar PubMed

63. Spiers, ASD, Parekh, SJ, Bishop, MB. Hairy-cell leukemia: induction of complete remission with pentostatin (2′-deoxycoformycin). J Clin Oncol 1984;2:1336–42. https://doi.org/10.1200/jco.1984.2.12.1336.Suche in Google Scholar PubMed

64. Takita, T, Muraoka, Y. Biosynthesis and chemical synthesis of bleomycin. In: Biochemistry of peptide antibiotics. Germany: De Gruyter; 1990.10.1515/9783110886139-012Suche in Google Scholar

65. Xu, ZD, Wang, M, Xio, SL, Zhang, YJ, Yang, M. Novel bleomycin analogues: synthesis, antitumor activity, and interaction with DNA. Helv Chim Acta 2004;87:2834–41. https://doi.org/10.1002/hlca.200490254.Suche in Google Scholar

66. Ganjoo, KN, Patel, SR. Trabectedin: an anticancer drug from the sea. Expert Opin Pharmacother 2009;10:2735–43. https://doi.org/10.1517/14656560903277236.Suche in Google Scholar PubMed

67. Marco, E, David-Cordonnier, MH, Bailly, C, Cuevas, C, Gago, F. Further insight into the DNA recognition mechanism of trabectedin from the differential affinity of its demethylated analogue ecteinascidin ET729 for the triplet DNA binding site CGA. J Med Chem 2006;49:6925–9. https://doi.org/10.1021/jm060640y.Suche in Google Scholar PubMed

68. Germano, G, Farpolli, R, Belgiovine, C, Anselo, A, Pesce, S, Liguori, M, et al.. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013;23:249–62. https://doi.org/10.1016/j.ccr.2013.01.008.Suche in Google Scholar PubMed

69. Carter, NJ, Keam, SJ. Trabectedin a review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs 2007;67:2257–76. https://doi.org/10.2165/00003495-200767150-00009.Suche in Google Scholar PubMed

70. Corey, EJ, Gin, DY, Kania, RS. Enantioselective total synthesis of ecteinascidin 743. J Am Chem Soc 1996;118:9202–3. https://doi.org/10.1021/ja962480t.Suche in Google Scholar

71. Cutts, JH, Beer, CT, Noble, RL. Biological properties of vincaleukoblastine, an alkaloid in Vinca rosea linn, with reference to its antitumor action. Cancer Res 1960;20:1023–31.Suche in Google Scholar

72. Noble, RL, Beer, CT, Cutts, JH. Further biological activities of vincaleukoblastine-an alkaloid isolated from Vinca rosea (L.). Biochem Pharmacol 1958;1:347–8.10.1016/0006-2952(59)90123-6Suche in Google Scholar

73. Bennouna, J, Delord, JP, Campone, M, Nguyen, L. Vinflunine: a new microtubule inhibitor agent. Clin Cancer Res 2008;14:1625–32. https://doi.org/10.1158/1078-0432.ccr-07-2219.Suche in Google Scholar

74. Kruczynski, A, Hill, BT. Vinflunine, the lastest Vinca alkaloid in clinical development: a review of its preclinical anticancer properties. Crit Rev Oncol Hematol 2001;40:159–73. https://doi.org/10.1016/s1040-8428(01)00183-4.Suche in Google Scholar PubMed

75. Issell, BF, Prestayko, AW, Comis, AL, Crooke, ST. Zinostatin (neocarzinostatin). Cancer Treat Rev 1979;6:239–49. https://doi.org/10.1016/s0305-7372(79)80040-7.Suche in Google Scholar PubMed

76. Okusaka, T, Okada, S, Ishii, H, Ikeda, M, Nakasuka, H, Nagahama, H, et al.. Transarterial chemotherapy with zinostatin stimalamer for hepatocellular carcinoma. Oncol 1998;55:276–83. https://doi.org/10.1159/000011863.Suche in Google Scholar PubMed

77. Sangeeth, M, Menakha, M, Vijayakumar, S. Insilico prediction of anticancer cyanobacterial drug from Nostoc. Biomed Prev Nutr 2014;4:71–3. https://doi.org/10.1016/j.bionut.2013.08.008.Suche in Google Scholar

78. Rohr, J. Cryptophycin anticancer drugs revisited. ACS Chem Biol 2006;1:747–50. https://doi.org/10.1021/cb6004678.Suche in Google Scholar PubMed

79. Sabgeetha, M, Menakha, M, Vijayakumar, S. Cryptophycin F-A potential cyanobacterial drug for breast cancer. Biomed Aging Pathol 2014;4:229–34.10.1016/j.biomag.2014.01.007Suche in Google Scholar

80. Kantarjian, HM, Talpaz, M, Santini, V, Murgo, A, Cheson, B, O’Brien, SM. Homoharringtonine. Cancer 2001;92:1591–605. https://doi.org/10.1002/1097-0142(20010915)92:6<1591::aid-cncr1485>3.0.co;2-u.10.1002/1097-0142(20010915)92:6<1591::AID-CNCR1485>3.0.CO;2-USuche in Google Scholar

81. Warrell, RPJr, Coonley, CJ, Gee, TS. Homoharringtonine: an effective new drug for remission induction in refractory nonlymphoblastic leukemia. J Clin Oncol 1985;3:617–21.10.1200/JCO.1985.3.5.617Suche in Google Scholar

82. Robin, JP, Dhal, R, Dujardin, G, Girodier, L, Mevellec, L, Poutot, S. The first semi-synthesis of enantiopure homoharringtonine via anhyfrohomoharringtonine from a performed chiral acyl moiety. Tetrahedron Lett 1999;40:2931–4. https://doi.org/10.1016/s0040-4039(99)00327-5.Suche in Google Scholar

83. Ahn, SK, Choi, NS, Jeong, BS, Kim, KK, Journ, DJ, Kim, JK, et al.. Practical synthesis of (S)-7-(2-isopropylamino)ethylcamptothecin hydrochloride, potent topoisomerase I inhibitor. J Heterocycl Chem 2000;37:1141–4. https://doi.org/10.1002/jhet.5570370519.Suche in Google Scholar

84. Song, Y, Seo, SS, Bang, YJ, Kang, SB, Nam, JH, Ryu, SY, et al.. Phase II evaluation of CKD-602, a camptothecin analog, administered on a five-day schedule in patients with recurrent or refractory ovarian cancer. Proc Am Soc Clin Oncol 2003;22:1877.Suche in Google Scholar

85. Kim, HK, Bang, YJ, Heo, DS, Shin, SG, Kim, NK. Phase I trial of CKD-602, a novel camptothecin derivative, in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2002;21:393.Suche in Google Scholar

86. Kim, GM, Kim, YS, Kang, YA, Jeong, JH, Kim, SM, Hong, YK, et al.. Efficacy and toxicity of belotecan for relapsed or refractory small cell lung cancer patients. J Thorac Oncol 2012;7:731–6. https://doi.org/10.1097/jto.0b013e31824b23cb.Suche in Google Scholar PubMed

87. Lee, DH, Kim, SW, Suh, C, Lee, JS, Lee, JH, Lee, SJ, et al.. Belotecan, new camptothecin analogue, is active in patients with small-cell lung cancer: results of a multicenter early phase II study. Ann Oncol 2008;19:123–7. https://doi.org/10.1093/annonc/mdm437.Suche in Google Scholar PubMed

88. Paller, CJ, Antonarakis, ES. Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des Dev Ther 2011;5:117–24. https://doi.org/10.2147/DDDT.S13029.Suche in Google Scholar PubMed PubMed Central

89. Vrignaud, P, Semiond, D, Benning, V, Beys, E, Bouchard, H, Gupta, S. Preclinical profile of cabazitaxel. Drug Des Dev Ther 2014;8:1851–67. https://doi.org/10.2147/dddt.s64940.Suche in Google Scholar

90. Zhang, G, Fang, W. A new synthesis route of cabazitaxel. J Chin Pharmaceut Sci 2012;21:472–6. https://doi.org/10.5246/jcps.2012.05.062.Suche in Google Scholar

91. Montecucco, A, Biamonti, G. Cellular response to etoposide treatment. Cancer Lett 2007;252:9–18. https://doi.org/10.1016/j.canlet.2006.11.005.Suche in Google Scholar PubMed

92. Sinkule, JA. Etoposide: a semisynthetic epipodophyllotoxin chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy 1984;4:61–71. https://doi.org/10.1002/j.1875-9114.1984.tb03318.x.Suche in Google Scholar PubMed

93. Philippe, M, Elsa, D, Claude, M, Emmanuel, B. Etoposide: discovery and medicinal chemistry. Curr Med Chem 2004;11:2443–66.10.2174/0929867043364531Suche in Google Scholar PubMed

94. Henwood, JM, Brogden, RN. Etoposide a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in combination chemotherapy of cancer. Drugs 1990;39:438–90. https://doi.org/10.2165/00003495-199039030-00008.Suche in Google Scholar PubMed

95. Hashimoto, SI, Honda, T, Ikegami, S. A new and general glycosidation method for podophyllum lignan glycosides. Tetrahedron Lett 1991;32:1653–4. https://doi.org/10.1016/s0040-4039(00)74296-1.Suche in Google Scholar

96. Henegar, KE, Ashford, SW, Baughman, TA, Sih, JC, Gu, RL. Practical asymmetric synthesis of (S)-4-ethyl-7,8-dihydro-4-hydroxy-1H-pyrano[3,4-f]indolizine- 3,6,10(4H)-trione, a key intermediate for the synthesis of irinotecan and other camptothecin analogs. J Org Chem 1997;62:6588–97. https://doi.org/10.1021/jo970173f.Suche in Google Scholar

97. Schultz, AG. Camptothecin. Chem Rev 1973;73:385–405. https://doi.org/10.1021/cr60284a004.Suche in Google Scholar PubMed

98. Vanhoefer, U, Harstrick, A, Achterrath, W, Cao, S, Seeber, S, Rustum, YM. Irinotecan in the treatment of colorectal cancer: clinical overview. J Clin Oncol 2001;19:1501–18. https://doi.org/10.1200/jco.2001.19.5.1501.Suche in Google Scholar PubMed

99. Woo, W, Carey, ET, Choi, M. Spotlight on liposomal irinotecan for metastatic pancreatic cancer: patient selection and perspectives. Onco Targets Ther 2019;12:1455–63. https://doi.org/10.2147/ott.s167590.Suche in Google Scholar PubMed PubMed Central

100. Rivera, E, Gomez, H. Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res 2010;12:S2. https://doi.org/10.1186/bcr2573.Suche in Google Scholar PubMed PubMed Central

101. Hunt, JT. Discovery of ixabepilone. Mol Cancer Therapeut 2009;8:275–81. https://doi.org/10.1158/1535-7163.mct-08-0999.Suche in Google Scholar

102. Li, J, Ren, J, Sun, W. Systematic review of ixabepilone for treating metastatic breast cancer. Breast Cancer 2016;24:171–9. https://doi.org/10.1007/s12282-016-0717-0.Suche in Google Scholar PubMed

103. Borzilleri, RM, Zheng, X, Schmidt, RJ, Johnson, JA, Kim, SH, DiMarco, JD, et al.. A novel application of a Pd(0)-catalyzed nucleophilic substitution reaction to the regio- and stereoselective synthesis of lactam analogues of the epothilone natural products. J Am Chem Soc 2000;122:8890–7. https://doi.org/10.1021/ja001899n.Suche in Google Scholar

104. Cheng, H, Huang, G. Synthesis & antitumor activity of epothilones B and D and their analogs. Future Med Chem 2018;10:1483–96. https://doi.org/10.4155/fmc-2017-0320.Suche in Google Scholar PubMed

105. Gao, H, Huang, G. Synthesis, anticancer activity and cytotoxicity of galactosylated epothilone B. Bioorg Med Chem 2018;26:5578–81. https://doi.org/10.1016/j.bmc.2018.10.005.Suche in Google Scholar PubMed

106. Bosch, JJKVD, Holthuis, JJM, Bult, A. Teniposide. Anal Profiles Drug Subst 1990;19:575–600. https://doi.org/10.1016/s0099-5428(08)60378-0.Suche in Google Scholar

107. Saulnier, MG, LeBoulleuc, KL, Long, BH, Vyas, DM, Crosswell, AR, Doyle, TW. Synthesis of biological evaluation of 4′-deshydroxy-4′-methyl etoposide and teniposide analogs. Bioorg Med Chem Lett 1992;2:1213–8. https://doi.org/10.1016/s0960-894x(00)80216-4.Suche in Google Scholar

108. Giaccone, G, Donadio, M, Bonardi, G, Testore, F, Calciati, A. Teniposide in the treatment of small-cell lung cancer: the influence of prior chemotherapy. J Clin Oncol 1988;6:1264–70. https://doi.org/10.1200/jco.1988.6.8.1264.Suche in Google Scholar

109. Liew, ST, Yang, LX. Design, synthesis and development of novel camptothecin drugs. Curr Pharmaceut Des 2008;14:1078–97. https://doi.org/10.2174/138161208784246180.Suche in Google Scholar PubMed

110. Sawada, S, Okajima, S, Aiyama, R, Nokata, K, Furuta, T, Yokokura, T, et al.. Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin. Chem Pharm Bull 1991;39:1446–54. https://doi.org/10.1248/cpb.39.1446.Suche in Google Scholar PubMed

111. Bissery, MC, Vrignaud, P, Lavelle, F, Chabot, GC. Experimental antitumor activity and pharmacokinetics of the camptothecin analog irinotecan (CPT-11) in mice. Anti Cancer Drugs 1996;7:437–60. https://doi.org/10.1097/00001813-199606000-00010.Suche in Google Scholar PubMed

112. Herben, VMH, ten Bokkel Huinink, WW, Beijnen, JH. Clinical pharmacokinetics of topotecan. Clin Pharmacokinet 1996;31:85–102. https://doi.org/10.2165/00003088-199631020-00001.Suche in Google Scholar PubMed

113. Ten Bokkel Huinink, WW, Gore, M, Carmichael, J, Gordon, A, Malfetan, J, Broom, IHC, et al.. Topotecan versus paclitaxel for the treatment of recurrent epithelial ovarian cancer. J Clin Oncol 1997;15:2183–93. https://doi.org/10.1200/jco.1997.15.6.2183.Suche in Google Scholar

114. Creemers, GJ, Lund, B, Verweij, J. Topoisomerase I inhibitors: topotecan and irenotecan. Cancer Treat Rev 1994;20:73–96. https://doi.org/10.1016/0305-7372(94)90011-6.Suche in Google Scholar PubMed

115. Coterill, IC, Rich, JO. Chemoenzymatic synthesis of n-trifluoroacetyl doxorubicin-14-valerate (valrubicin). Org Process Res Dev 2005;9:818–21.10.1021/op0501186Suche in Google Scholar

116. Newling, DWW, Hetherington, J, Sundaram, SK, Robinson, MRG, Kisbenedek, L. The use of valrubicin for the chemoresection of superficial bladder cancer – a marker lesion study. Eur Urol 2001;39:643–7. https://doi.org/10.1159/000052521.Suche in Google Scholar PubMed

117. Fahy, J, du Boullay, VT, Bigg, DCH. New method of synthesis of vinca alkaloid derivatives. Bioorg Med Chem Lett 2002;12:505–7. https://doi.org/10.1016/s0960-894x(01)00784-3.Suche in Google Scholar PubMed

118. Johnson, SA, Harper, P, Hortobygyi, GN, Pouillart, P. Vinorelbine: an overview. Cancer Treat Rev 1996;22:127–42. https://doi.org/10.1016/s0305-7372(96)90032-8.Suche in Google Scholar PubMed

119. Montemurro, F, Valabrega, G, Aglietta, M. Trastuzumab treatment in breast cancer. N Engl J Med 2006;354:809–20. https://doi.org/10.1056/NEJMc060852.Suche in Google Scholar PubMed

120. Goa, KL, Faulds, D. Vinorelbine A review of its pharmacological properties and clinical use in cancer chemotherapy. Drugs Aging 1994;5:200–34. https://doi.org/10.2165/00002512-199405030-00006.Suche in Google Scholar PubMed

121. Mongiat-Artus, P, Teillac, P. Abarelix: the first gonadotrophin-releasing hormone antagonist for the treatment of prostate cancer. Expert Opin Pharmacother 2004;5:2171–9. https://doi.org/10.1517/14656566.5.10.2171.Suche in Google Scholar PubMed

122. Massoud, W, Paparel, P, Lopez, JG, Perrin, P, Daumont, M, Ruffion, A. Discovery of a pituitary adenoma following treatment with a gonadotropin-releasing hormone agonist in a patient with prostate cancer. Int J Urol 2006;13:87–8. https://doi.org/10.1111/j.1442-2042.2006.01237.x.Suche in Google Scholar PubMed

123. Pezaro, CJ, Mukherji, D, De Bono, JS. Abiraterone acetate: redefining hormone treatment for advanced prostate cancer. Drug Discov Today 2012;17:221–6. https://doi.org/10.1016/j.drudis.2011.12.012.Suche in Google Scholar PubMed

124. Logothetis, CJ, Efstathiou, E, Manuguid, F, Kirkpatrick, P. Abiraterone acetate. Nat Rev Drug Discov 2011;10:573–4. https://doi.org/10.1038/nrd3516.Suche in Google Scholar PubMed

125. De Bono, JS, Logothetis, CJ, Molina, A, Fizazi, K, North, S, Chu, L, et al.. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011;364:1995–2005. https://doi.org/10.1056/nejmoa1014618.Suche in Google Scholar PubMed PubMed Central

126. Ryan, CJ, Smith, MR, de Bono, JS, Molina, A, Logothetis, CJ, de Souza, P, et al.. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013;368:138–48. https://doi.org/10.1056/nejmoa1209096.Suche in Google Scholar PubMed PubMed Central

127. James, ND, de Bono, JS, Spears, MR, Clarke, NW, Mason, MD, Dearnaley, DP, et al.. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 2017;377:338–51. https://doi.org/10.1056/nejmoa1702900.Suche in Google Scholar

128. Fizazi, K, Tran, NP, Fein, L, Matsubara, N, Rodriguez-Antolin, A, Alekseev, BY, et al.. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017;377:352–60. https://doi.org/10.1056/nejmoa1704174.Suche in Google Scholar

129. Wind, S, Schnell, D, Ebner, T, Freiwald, M, Stopfer, P. Clinical pharmacokinetics and pharmacodynamics of afatinib. Clin Pharmacokinet 2016;56:235–50. https://doi.org/10.1007/s40262-016-0440-1.Suche in Google Scholar PubMed PubMed Central

130. Dungo, RT, Keating, GM. Afatinib: first global approval. Drugs 2013;73:1503–15. https://doi.org/10.1007/s40265-013-0111-6.Suche in Google Scholar PubMed

131. Chen, Y, Tortorici, MA, Garrett, M, Hee, B, Klamerus, KJ, Pithavala, KY. Clinical pharmacology of axitinib. Clin Pharmacokinet 2013;52:713–25. https://doi.org/10.1007/s40262-013-0068-3.Suche in Google Scholar PubMed

132. Escudier, B, Gore, M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R D 2011;11:113–26. https://doi.org/10.2165/11591240-000000000-00000.Suche in Google Scholar PubMed PubMed Central

133. Sonpavde, G, Hutson, TE, Rini, BI. Axitinib for renal cell carcinoma. Expert Opin Invest Drugs 2008;17:741–8. https://doi.org/10.1517/13543784.17.5.741.Suche in Google Scholar PubMed

134. Rixe, O, Bukowski, RM, Michaelson, MD, Wilding, G, Hudes, GR, Bolte, O, et al.. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol 2007;8:975–84. https://doi.org/10.1016/s1470-2045(07)70285-1.Suche in Google Scholar PubMed

135. Kaminskas, E, Farrell, A, Abraham, S, Baird, A, Hsieh, L-S, Lee, S-L, et al.. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 2005;11:3604–8. https://doi.org/10.1158/1078-0432.ccr-04-2135.Suche in Google Scholar PubMed

136. Cataldo, VD, Quintás-Cardama, A, Cortes, J. Azacitidine for the treatment of myelodysplastic syndrome. Expert Rev Anticancer Ther 2009;9:875–84. https://doi.org/10.1586/era.09.61.Suche in Google Scholar PubMed

137. Issa, J-PJ, Kantarjian, HM, Kirkpatrick, P. Azacitidine. Nat Rev Drug Discov 2005;4:275–6. https://doi.org/10.1038/nrd1698.Suche in Google Scholar PubMed

138. Stansfield, L, Hughes, TE, Walsh-Chocolaad, TL. Bosutinib: a second-generation tyrosine kinase inhibitor for chronic myelogenous leukemia. Ann Pharmacother 2013;47:1703–11. https://doi.org/10.1177/1060028013503124.Suche in Google Scholar PubMed

139. Yin, XJ, Xu, GH, Sun, X, Peng, Y, Ji, X, Jiang, K, et al.. Synthesis of bosutinib from 3-methoxy-4-hydroxybenzoic acid. Molecules 2010;15:4261–6. https://doi.org/10.3390/molecules15064261.Suche in Google Scholar PubMed PubMed Central

140. Mao, Y, Zhu, C, Kong, Z, Wang, J, Zhu, G, Ren, X. New synthetic process for bosutinib. Synthesis 2015;47:3133–8. https://doi.org/10.1055/s-0035-1560471.Suche in Google Scholar

141. Elisei, R, Schlumberger, MJ, Müller, SP, Schöffski, P, Brose, M, Shah, M, et al.. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013;31:3639–46. https://doi.org/10.1200/jco.2012.48.4659.Suche in Google Scholar

142. Choueiri, TK, Escudier, B, Powles, T, Mainwaring, PN. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015;373:1814–23. https://doi.org/10.1056/nejmoa1510016.Suche in Google Scholar PubMed PubMed Central

143. Abou-Alfa, GK, Meyer, T, Cheng, AL, El-Khoueiry, AB. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018;379:54–63. https://doi.org/10.1056/nejmoa1717002.Suche in Google Scholar

144. Fang, R, Wang, B, Zhao, Z, Yin, L, Wang, H, Xu, J. A new synthesis of cabozantinib. Org Prep Proced Int 2019;51:381–7. https://doi.org/10.1080/00304948.2019.1615362.Suche in Google Scholar

145. Walko, CM, Lindley, C. Capecitabine: a review. Clin Therapeut 2005;27:23–44. https://doi.org/10.1016/j.clinthera.2005.01.005.Suche in Google Scholar PubMed

146. Twelves, C, Wong, A, Nowacki, MP, Abt, M, Cervantes, A, Fagerberg, J, et al.. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 2005;352:2696–704. https://doi.org/10.1056/nejmoa043116.Suche in Google Scholar

147. Gröhn, P, Heinonen, E, Kumpulainen, E, Länsimies, H, Lantto, A, Salmi, R, et al.. Oral carmofur in advanced gastrointestinal cancer. Am J Clin Oncol 1990;13:477–9.10.1097/00000421-199012000-00005Suche in Google Scholar PubMed

148. Dementiev, A, Joachimiak, A, Nguyen, H, Gorelik, A, Illes, K, Shabani, S, et al.. Molecular mechanism of inhibition of acid ceramidase by carmofur. J Med Chem 2019;62:987–92. https://doi.org/10.1021/acs.jmedchem.8b01723.Suche in Google Scholar PubMed PubMed Central

149. Ken, M, Masae, K. Postoperative adjuvant use of carmofur for early breast cancer. Osaka City Med J 2003;49:77–83.Suche in Google Scholar

150. Bao, Y, Boissenot, T, Guégain, E, Desmaële, D, Mura, S, Couvreur, P, et al.. Simple synthesis of cladribine-based anticancer polymer prodrug nanoparticles with tunable drug delivery properties. Chem Mater 2016;28:6266–75. https://doi.org/10.1021/acs.chemmater.6b02502.Suche in Google Scholar

151. Bryson, HM, Sorkin, EM. Cladribine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in haematological malignancies. Drugs 1993;46:872–94. https://doi.org/10.2165/00003495-199346050-00007.Suche in Google Scholar PubMed

152. Xu, S, Yao, P, Chen, G, Wang, H. A new synthesis of 2-chloro-2′-deoxyadenosine (Cladribine) CdA. Nucleos Nucleot Nucleic Acids 2011;30:353–9. https://doi.org/10.1080/15257770.2011.587701.Suche in Google Scholar PubMed

153. Tobias, SC, Borch, RF. Synthesis and biological evaluation of a cytarabine phosphoramidate prodrug. Mol Pharm 2004;1:112–6. https://doi.org/10.1021/mp034019v.Suche in Google Scholar PubMed

154. Löwenberg, B, Pabst, T, Vellenga, E, Putten, WV, Schouten, HC, Graux, C, et al.. Cytarabine dose for acute myeloid leukemia. N Engl J Med 2011;364:1027–36.10.1056/NEJMoa1010222Suche in Google Scholar PubMed

155. Momparler, RL. Biochemical pharmacology of cytosine arabinoside. Med Pediatr Oncol Suppl 1982;1:45–8. https://doi.org/10.1002/mpo.2950100707.Suche in Google Scholar PubMed

156. Yates, J, Glidewell, O, Wiernik, P, Cooper, MR, Steinberg, D, Dosik, H, et al.. Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: a CALGB study. Blood 1982;60:454–62. https://doi.org/10.1182/blood.v60.2.454.bloodjournal602454.Suche in Google Scholar

157. Herzig, RH, Wolff, SN, Lazarus, HM, Phillips, GL, Karanes, C, Herzig, GP. High-dose cytosine arabinoside therapy for refractory leukemia. Blood 1983;62:361–9. https://doi.org/10.1182/blood.v62.2.361.bloodjournal622361.Suche in Google Scholar

158. Mini, E, Nobili, S, Caciagli, B, Landini, I, Mazzei, T. Cellular pharmacology of gemcitabine. Ann Oncol 2006;17:v7–12. https://doi.org/10.1093/annonc/mdj941.Suche in Google Scholar PubMed

159. Hermans, C, Straetmans, N, Michaux, JL, Ferrant, A. Pericarditis induced by high-dose cytosine arabinoside chemotherapy. Ann Hematol 1997;75:55–7. https://doi.org/10.1007/s002770050312.Suche in Google Scholar PubMed

160. Menzies, AM, Long, GV, Murali, R. Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Des Dev Ther 2012;6:391–405. https://doi.org/10.2147/DDDT.S38998.Suche in Google Scholar PubMed PubMed Central

161. Ballantyne, AD, Garnock-Jones, KP. First global approval. Drugs 2013;73:1367–76. https://doi.org/10.1007/s40265-013-0095-2.Suche in Google Scholar PubMed

162. Hauschild, A, Grob, JJ, Demidov, LV, Jouary, T. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012;380:358–65. https://doi.org/10.1016/s0140-6736(12)60868-x.Suche in Google Scholar PubMed

163. Silva, LDP, Lima, MD, Kantarjian, H, Faderl, S, Kebriaei, P, Davisson, J, et al.. Feasibility of allo-SCT after hypomethylating therapy with decitabine for myelodysplastic syndrome. Bone Marrow Transplant 2009;49:839–43. https://doi.org/10.1038/bmt.2008.400.Suche in Google Scholar PubMed

164. Yoo, CB, Jeong, S, Egger, G, Liang, G, Tang, C, Redkar, S, et al.. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 2007;67:6400–8. https://doi.org/10.1158/0008-5472.can-07-0251.Suche in Google Scholar PubMed

165. Oki, Y, Aoki, E, Issa, JPJ. Decitabine-bedside to bench. Crit Rev Oncol Hematol 2007;61:140–52. https://doi.org/10.1016/j.critrevonc.2006.07.010.Suche in Google Scholar PubMed

166. Qin, T, Castoro, R, Ahdab, SE, Jelinek, J, Wang, X, Si, J, et al.. Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One 2011;6:e23372. https://doi.org/10.1371/journal.pone.0023372.Suche in Google Scholar PubMed PubMed Central

167. Derissen, EJB, Beijnen, JH, Schellens, JHM. Concise drug review: azacitidine and decitabine. Oncologist 2013;18:619–24. https://doi.org/10.1634/theoncologist.2012-0465.Suche in Google Scholar PubMed PubMed Central

168. Sau, S, Banerjee, R. Cationic lipid-conjugated dexamethasone as a selective antitumor agent. Eur J Med Chem 2014;83:433–47. https://doi.org/10.1016/j.ejmech.2014.06.051.Suche in Google Scholar PubMed

169. Wang, H, Wang, Y, Rayburn, ER, Hill, DL, Rinehart, JJ, Zhang, R. Dexamethasone as a chemosensitizer for breast cancer chemotherapy: potentiation of the antitumor activity of adriamycin, modulation of cytokine expression, and pharmacokinetics. Int J Oncol 2007;30:947–53. https://doi.org/10.3892/ijo.30.4.947.Suche in Google Scholar

170. Shalet, SM, Lendon, M, Jones, PHM. Testicular function after chemotherapy for acute lymphoblastic leukemia. N Engl J Med 1981;305:520. https://doi.org/10.1056/NEJM198108273050914.Suche in Google Scholar PubMed

171. Steinberg, M. Degarelix: a gonadotropin-releasing hormone antagonist for the management of prostate cancer. Clin Therapeut 2009;31:2312–31. https://doi.org/10.1016/j.clinthera.2009.11.009.Suche in Google Scholar PubMed

172. Frampton, JE, Lyseng-Williamson, KA. Degarelix. Drugs 2009;69:1967–76. https://doi.org/10.2165/10484080-000000000-00000.Suche in Google Scholar PubMed

173. Bollag, W, Hartmann, HR. Tumor inhibitory effects of a new fluorouracil derivative: 5′-deoxy-5-fluorouridine. Eur J Cancer 1980;16:427–32. https://doi.org/10.1016/0014-2964(80)90221-2.Suche in Google Scholar PubMed

174. Abele, R, Alberto, P, Kaplan, S, Siegenthaler, P, Hofmann, V, Ryssel, HJ, et al.. Phase II study of doxifluridine in advanced colorectal adenocarcinoma. J Clin Oncol 1983;1:750–4. https://doi.org/10.1200/jco.1983.1.12.750.Suche in Google Scholar

175. McBride, A, Butler, SK. Eribulinmesylate: a novel halichondrin B analogue for the treatment of metastatic breast cancer. Am J Health Syst Pharm 2012;69:745–55. https://doi.org/10.2146/ajhp110237.Suche in Google Scholar PubMed

176. Kaufman, PA, Awada, A, Twelves, C, Yelle, L, Perez, EA, Velikova, G, et al.. Phase III open-label randomized study of eribulinmesylate versus capecitabine in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 2015;33:594–601. https://doi.org/10.1200/jco.2013.52.4892.Suche in Google Scholar

177. Cortes, J, O’Shaughnessy, J, Loesch, D, Blum, JL, Vahdat, LT, Petrakova, K, et al.. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 2011;377:914–23. https://doi.org/10.1016/s0140-6736(11)60070-6.Suche in Google Scholar PubMed

178. Swami, U, Shah, U, Goel, S. Eribulin in cancer treatment. Mar Drugs 2015;13:5016–58. https://doi.org/10.3390/md13085016.Suche in Google Scholar PubMed PubMed Central

179. Huyck, TK, Gradishar, W, Manuguid, F, Kirkpatrick, P. Eribulin mesylate. Nat Rev Drug Discov 2011;10:173–4. https://doi.org/10.1038/nrd3389.Suche in Google Scholar PubMed

180. Adkins, JC, Peters, DH, Markham, A. Fludarabine. An update of its pharmacology and use in the treatment of haematological malignancies. Drugs 1997;53:1005–37. https://doi.org/10.2165/00003495-199753060-00007.Suche in Google Scholar PubMed

181. Ross, SR, McTavish, D, Faulds, D. Fludarabine. A review of its pharmacological properties and therapeutic potential in malignancy. Drugs 1993;45:737–59. https://doi.org/10.2165/00003495-199345050-00009.Suche in Google Scholar PubMed

182. Gandhi, V, Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 2002;41:93–103. https://doi.org/10.2165/00003088-200241020-00002.Suche in Google Scholar PubMed

183. Diasio, RB, Harris, BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 1989;16:215–37. https://doi.org/10.2165/00003088-198916040-00002.Suche in Google Scholar PubMed

184. Jubeen, F, Liaqat, A, Amjad, F, Sultan, M, Iqbal, SZ, Sajid, I, et al.. Synthesis of 5-fluorouracil cocrystals with novel organic acids as coformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst Growth Des 2020;20:2406–14. https://doi.org/10.1021/acs.cgd.9b01570.Suche in Google Scholar

185. Pinedo, HM, Peters, GF. Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988;6:1653–64. https://doi.org/10.1200/jco.1988.6.10.1653.Suche in Google Scholar

186. Ma, M, Guan, Y, Zhang, C, Hao, J, Xing, P, Su, J, et al.. Stimulus-responsive supramolecular vesicles with effective anticancer activity prepared by cyclodextrin and ftorafur. Colloids Surf A Physicochem Eng Asp 2014;454:38–45. https://doi.org/10.1016/j.colsurfa.2014.04.005.Suche in Google Scholar

187. Noble, S, Goa, KL. Gemcitabine. A review of its pharmacology and clinical potential in non-small cell lung cancer and pancreatic cancer. Drugs 1997;54:447–72. https://doi.org/10.2165/00003495-199754030-00009.Suche in Google Scholar PubMed

188. Von Hoff, DD, Ervin, T, Arena, FP, Chiorean, EG, Infante, J, Moore, M, et al.. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013;369:1691–703. https://doi.org/10.1056/nejmoa1304369.Suche in Google Scholar

189. Conroy, T, Hammel, P, Hebbar, M, Abdelghani, MB, Wei, AC, Raoul, J-L, et al.. Folfirinox or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 2018;379:2395–406. https://doi.org/10.1056/nejmoa1809775.Suche in Google Scholar PubMed

190. Deeks, ED. Histrelin. In advanced prostate cancer. Drugs 2010;70:623–30. https://doi.org/10.2165/11204800-000000000-00000.Suche in Google Scholar PubMed

191. Eldar-Geva1, T, Liberty, G, Chertin, B, Fridmans, A, Farkas, A, Margalioth, EJ, et al.. Relationships between FSH, inhibin B, anti-mullerian hormone, and testosterone during long-term treatment with the GnRH-agonist histrelin in patients with prostate cancer. Eur J Endocrinol 2010;162:177–81. https://doi.org/10.1530/eje-09-0366.Suche in Google Scholar

192. Oyler, AR, Naldi, RE, Lloyd, JR, Graden, DA, Shaw, CJ, Cotter, ML. Characterization of the solution degradation products of histrelin, a gonadotropin releasing hormone (LH/RH) agonist. J Pharmaceut Sci 1991;80:271–5. https://doi.org/10.1002/jps.2600800316.Suche in Google Scholar PubMed

193. Schlegel, PN. Efficacy and safety of histrelin subdermal implant in patients with advanced prostate cancer. J Urol 2006;175:1353–8. https://doi.org/10.1016/s0022-5347(05)00649-x.Suche in Google Scholar

194. Schlegel, PN, Kuzma, P, Frick, J, Farkas, A, Gomahr, A, Spitz, I, et al.. Effective long-term androgen suppression in men with prostate cancer using a hydrogel implant with the GnRH agonist histrelin. Urology 2001;58:578–82. https://doi.org/10.1016/s0090-4295(01)01293-6.Suche in Google Scholar PubMed

195. Cameron, F, Sanford, M. Ibrutinib: first global approval. Drugs 2014;74:263–71. https://doi.org/10.1007/s40265-014-0178-8.Suche in Google Scholar PubMed

196. Burger, JA, Tedeschi, A, Barr, PM, Robak, T, Owen, C, Ghia, P, et al.. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 2015;373:2425–37. https://doi.org/10.1056/nejmoa1509388.Suche in Google Scholar

197. Cheah, CY, Fowler, NH. Idelalisib in the management of lymphoma. Blood 2016;128:331–6. https://doi.org/10.1182/blood-2016-02-702761.Suche in Google Scholar PubMed PubMed Central

198. Markham, A. Idelalisib: first global approval. Drugs 2014;74:1701–7. https://doi.org/10.1007/s40265-014-0285-6.Suche in Google Scholar PubMed

199. Furman, RR, Sharman, JP, Coutre, SE, Cheson, BD, Pagel, JM, Hillmen, P, et al.. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014;370:997–1007. https://doi.org/10.1056/nejmoa1315226.Suche in Google Scholar PubMed PubMed Central

200. Zirlik, K, Veelken, H. Idelalisib. Recent Results Cancer Res 2018;212:243–64. https://doi.org/10.1007/978-3-319-91439-8_12.Suche in Google Scholar PubMed

201. Roth, B, Hultquist, ME, Fahrenbach, MJ, Cosulich, DB, Broquist, HP, Brockman, JAJr, et al.. Synthesis of leucovorin. J Am Chem Soc 1952;74:3247–52. https://doi.org/10.1021/ja01133a014.Suche in Google Scholar

202. Bhaludra, CSS, Murugulla, AC, Pullagummi, C, Polkampally, AK, Anupalli, RR. Anticancer studies of leucovorin against methotrexate induced genotoxicity in swiss albino mice. Lett Drug Des Discov 2014;11:10–4.10.2174/15701808113109990052Suche in Google Scholar

203. Beller, E, Tattersall, M, Lumley, T, Levi, J, Dalley, D, Olver, I, et al.. Improved quality of life with megestrol acetate in patients with endocrine-insensitive advanced cancer: a randomised placebo-controlled trial. Ann Oncol 1997;8:277–83. https://doi.org/10.1023/a:1008291825695.10.1023/A:1008291825695Suche in Google Scholar PubMed

204. Canetta, R, Florentine, S, Hunter, H, Lenaz, L. Megestrol acetate. Cancer Treat Rev 1983;10:141–57. https://doi.org/10.1016/0305-7372(83)90029-4.Suche in Google Scholar PubMed

205. Lundgren, S, Helle, SI, Lonning, PE. Profound suppression of plasma estrogens by megestrol acetate in postmenopausal breast cancer patients. Clin Cancer Res 1996;2:1515–21.Suche in Google Scholar

206. Busquets, S, Serpe, R, Sirisi, S, Toledo, M, Coutinho, J, Martínez, R, et al.. Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. Clin Nutr ESPEN 2010;29:733–7. https://doi.org/10.1016/j.clnu.2010.06.003.Suche in Google Scholar PubMed

207. Saczewski, F, Maruszak, M, Bednarski, PJ. Synthesis and cytotoxic activity of imidazo[1,2-a]-1,3,5-triazine analogues of 6-mercaptopurine. Arch Pharm Chem Life Sci 2008;341:121–5. https://doi.org/10.1002/ardp.200700176.Suche in Google Scholar PubMed

208. Miron, T, Arditti, F, Konstantinovski, L, Rabinkov, A, Mirelman, D, Berrebi, A, et al.. Novel derivatives of 6-mercaptopurine: synthesis, characterization and antiproliferative activities of S-allylthio-mercaptopurines. Eur J Med Chem 2009;44:541–50. https://doi.org/10.1016/j.ejmech.2008.03.027.Suche in Google Scholar PubMed

209. Lilleyman, JS, Lennard, L. Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 1994;343:1188–90. https://doi.org/10.1016/s0140-6736(94)92400-7.Suche in Google Scholar PubMed

210. Lennard, L, Lilleyman, JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989;7:1816–23. https://doi.org/10.1200/jco.1989.7.12.1816.Suche in Google Scholar PubMed

211. Trapani, A, Denora, N, Iacobellis, G, Sitterberg, J, Bakowsky, U, Kissel, T. Methotrexate-loaded chitosan-and glycolchitosan-based nanoparticles: a promising strategy for the administration of the anticancer drug to brain tumors. AAPS Pharm Sci Tech 2011;12:1302–11. https://doi.org/10.1208/s12249-011-9695-x.Suche in Google Scholar PubMed PubMed Central

212. Attari, E, Nosrati, H, Danafar, H, Manjili, HK. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res 2019;107:2492–500. https://doi.org/10.1002/jbm.a.36755.Suche in Google Scholar PubMed

213. Narayani, R, Rao, KP. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. J Microencapsul 1994;11:69–77. https://doi.org/10.3109/02652049409040439.Suche in Google Scholar PubMed

214. Ballantyne, A, Dhillon, S. Trastuzumab emtansine: first global approval. Drugs 2013;73:755–65. https://doi.org/10.1007/s40265-013-0050-2.Suche in Google Scholar PubMed

215. Peddi, PF, Hurvitz, SA. Trastuzumab emtansine: the first targeted chemotherapy for treatment of breast cancer. Future Oncol 2013;9:319–26. https://doi.org/10.2217/fon.13.7.Suche in Google Scholar PubMed PubMed Central

216. Verma, S, Miles, D, Gianni, L, Krop, IE, Welslau, M, Baselga, J, et al.. Trastuzunab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012;367:1783–91. https://doi.org/10.1056/nejmoa1209124.Suche in Google Scholar

217. von Minckwitz, G, Huang, C-S, Mano, MS, Loibl, S, Mamounas, EP, Untch, M, et al.. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 2018;380:617–28. https://doi.org/10.1056/NEJMoa1814017.Suche in Google Scholar PubMed

218. Cohen, MH, Johnson, JR, Massie, T, Sridhara, R, McGuinn, WD, Abraham, S, et al.. Approval summary: nelarabine for the treatment of T-cell lymphoblastic leukemia/lymphoma. Clin Cancer Res 2006;12:5329–35. https://doi.org/10.1158/1078-0432.ccr-06-0606.Suche in Google Scholar

219. Buie, LW, Epstein, SS, Lindley, CM. Nelarabine: a novel purine antimetabolite antineoplastic agent. Clin Therapeut 2007;29:1887–99. https://doi.org/10.1016/j.clinthera.2007.09.002.Suche in Google Scholar PubMed

220. Roecker, AM, Stockert, A, Kisor, DF. Nelarabine in the treatment of refractory t-cell malignancies. Oncology 2010;4:133–41. https://doi.org/10.4137/CMO.S4364.Suche in Google Scholar PubMed PubMed Central

221. Adjei, AA. Pharmacology and mechanism of action of pemetrexed. Clin Lung Cancer 2004;5:S51–5. https://doi.org/10.3816/clc.2004.s.003.Suche in Google Scholar PubMed

222. Rollins, KD, Lindley, C. Pemetrexed: a multitargeted antifolate. Clin Therapeut 2005;27:1343–82. https://doi.org/10.1016/j.clinthera.2005.09.010.Suche in Google Scholar PubMed

223. Chattopadhyay, S, Moran, RG, Goldman, ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Therapeut 2007;6:404–17. https://doi.org/10.1158/1535-7163.mct-06-0343.Suche in Google Scholar

224. Brogden, RN, Sorkin, EM. Pentostatin. Drugs 1993;46:652–77. https://doi.org/10.2165/00003495-199346040-00006.Suche in Google Scholar PubMed

225. Spiers, ASD, Moore, D, Cassileth, PA, Harrington, DP. Remissions in hairy-cell leukemia with pentostatin (2′-deoxycoformycin). N Engl J Med 1987;316:825–30. https://doi.org/10.1056/nejm198704023161401.Suche in Google Scholar PubMed

226. Boyle, EM, Morschhauser, F. Pixantrone: a novel anthracycline-like drug for the treatment of non-Hodgkin lymphoma. Expert Opin Drug Saf 2015;14:601–7. https://doi.org/10.1517/14740338.2015.1010505.Suche in Google Scholar PubMed

227. Pettengell, R, Kaur, J. Pixantrone dimaleate for treating non-Hodgkin’s lymphoma. Expert Opin Orphan Drugs 2015;3:747–57. https://doi.org/10.1517/21678707.2015.1042454.Suche in Google Scholar

228. Mukherji, D, Pettengell, R. Pixantrone for the treatment of aggressive non-Hodgkin lymphoma. Expert Opin Pharmacother 2010;11:1915–23. https://doi.org/10.1517/14656566.2010.494180.Suche in Google Scholar PubMed

229. Pettengell, R, Coiffier, B, Narayanan, G, de Mendoza, FH, Digumarti, R, Gomez, H, et al.. Pixantrone dimaleate versus other chemotherapeutic agents as a single-agent salvage treatment in patients with relapsed or refractory aggressive non-Hodgkin lymphoma: a phase 3, multicentre, open-label, randomised trial. Lancet Oncol 2012;13:696–706. https://doi.org/10.1016/s1470-2045(12)70212-7.Suche in Google Scholar PubMed

230. Cortes, JE, Kantarjian, H, Shah, NP, Bixby, D, Mauro, MJ, Flinn, L, et al.. Ponatinib in refractory philadelphia chromosome–positive leukemias. N Engl J Med 2012;367:2075–88. https://doi.org/10.1056/nejmoa1205127.Suche in Google Scholar

231. Tan, FH, Putoczki, TL, Stylli, SS, Luwor, RB. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. Onco Targets Ther 2019;12:635–45. https://doi.org/10.2147/ott.s189391.Suche in Google Scholar

232. Shamroe, CL, Comeau, JM. Ponatinib: a new tyrosine kinase inhibitor for the treatment of chronic myeloid leukemia and Philadelphia chromosome–positive acute lymphoblastic leukemia. Ann Pharmacother 2013;47:1540–6. https://doi.org/10.1177/1060028013501144.Suche in Google Scholar PubMed

233. Gainor, JF, Chabner, BA. Ponatinib: accelerated disapproval. Oncologist 2015;20:847–8. https://doi.org/10.1634/theoncologist.2015-0253.Suche in Google Scholar PubMed PubMed Central

234. Marchi, E, Mangone, M, Zullo, K, O’Connor, OA. Pralatrexate pharmacology and clinical development. Clin Cancer Res 2013;19:6657–61. https://doi.org/10.1158/1078-0432.ccr-12-2251.Suche in Google Scholar

235. Zain, J, O’Connor, O. Pralatrexate: basic understanding and clinical development. Expert Opin Pharmacother 2010;11:1705–14. https://doi.org/10.1517/14656566.2010.489552.Suche in Google Scholar PubMed

236. Heo, SK, Noh, EK, Kim, JY, Jo, JC, Choi, Y, Koh, SJ, et al.. Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells. Eur J Pharmacol 2017;804:52–6. https://doi.org/10.1016/j.ejphar.2017.03.040.Suche in Google Scholar PubMed

237. Eskazan, AE, Soysal, T. Radotinib in the treatment of chronic phase chronic myeloid leukemia patients. Haematologica 2015;100:39. https://doi.org/10.3324/haematol.2014.117846.Suche in Google Scholar PubMed PubMed Central

238. Heo, S-K, Noh, E-K, Yoon, D-J, Jo, J-C, Choi, Y, Koh, SJ, et al.. Radotinib induces apoptosis of CD11b+ cells differentiated from acute myeloid leukemia cells. PLoS One 2015;10:1–18. https://doi.org/10.1371/journal.pone.0129853.Suche in Google Scholar PubMed PubMed Central

239. Eskazan, AE, Keskin, D. Radotinib and its clinical potential in chronic-phase chronic myeloid leukemia patients: an update. Therapeut Adv Hematol 2017;8:237–43. https://doi.org/10.1177/2040620717719851.Suche in Google Scholar PubMed PubMed Central

240. Sandro, B, Antonio, G, Andrea, C, Karen, B, Fausto, P. A systematic review of raltitrexed-based first-line chemotherapy in advanced colorectal cancer. Anti Cancer Drugs 2014;25:1122–8.10.1097/CAD.0000000000000133Suche in Google Scholar PubMed

241. Liu, Y, Wu, W, Hong, W, Sun, X, Wu, J, Huang, Q. Raltitrexed-based chemotherapy for advanced colorectal cancer. Clin Res 2014;38:219–25. https://doi.org/10.1016/j.clinre.2013.11.006.Suche in Google Scholar PubMed

242. Gunasekara, NS, Faulds, D. Raltitrexed. Drugs 1998;55:423–35. https://doi.org/10.2165/00003495-199855030-00012.Suche in Google Scholar PubMed

243. Arai, H, Battaglin, F, Wang, J, Lo, JH, Soni, S, Zhang, W, et al.. Molecular insight of regorafenib treatment for colorectal cancer. Cancer Treat Rev 2019;81:101912. https://doi.org/10.1016/j.ctrv.2019.101912.Suche in Google Scholar PubMed PubMed Central

244. Strumberg, D, Schultheis, B. Regorafenib for cancer. Expert Opin Invest Drugs 2012;21:879–89. https://doi.org/10.1517/13543784.2012.684752.Suche in Google Scholar PubMed

245. Broglie, L, Pommert, L, Rao, S, Thakar, M, Phelan, R, Margolis, D, et al.. Ruxolitinib for treatment of refractory hemophagocytic lymphohistiocytosis. Blood Adv 2017;1:1533–6. https://doi.org/10.1182/bloodadvances.2017007526.Suche in Google Scholar PubMed PubMed Central

246. Vannucchi, AM, Kiladjian, JJ, Griesshammer, M, Masszi, T, Durrant, S, Passamonti, F, et al.. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 2015;372:426–35. https://doi.org/10.1056/nejmoa1409002.Suche in Google Scholar PubMed PubMed Central

247. Ajayi, S, Becker, H, Reinhardt, H, Engelhardt, M, Zeiser, R, Bubnoff, NV, et al.. Ruxolitinib. Recent Results Cancer Res 2018;212:119–32. https://doi.org/10.1007/978-3-319-91439-8_6.Suche in Google Scholar PubMed

248. Wu, H, Minamide, T, Yano, T. Role of photodynamic therapy in the treatment of esophageal cancer. Dig Endosc 2019;31:508–16. https://doi.org/10.1111/den.13353.Suche in Google Scholar PubMed

249. Wang, S, Bromley, E, Xu, L, Chen, JC, Keltner, L. Talaporfin sodium. Expert Opin Pharmacother 2010;11:133–40. https://doi.org/10.1517/14656560903463893.Suche in Google Scholar PubMed

250. Akimoto, J, Haraoka, J, Aizawa, K. Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 2012;9:91–9. https://doi.org/10.1016/j.pdpdt.2012.01.001.Suche in Google Scholar PubMed

251. Darkes, MJM, Plosker, GL, Jarvis, B. Temozolomide. A review of its use in the treatment of malignant gliomas, malignant melanoma and other advanced cancers. Am J Cancer 2002;1:55–80. https://doi.org/10.2165/00024669-200201010-00006.Suche in Google Scholar

252. Hart, MG, Garside, R, Rogers, G, Stein, K, Grant, R. Temozolomide for high grade glioma. Cochrane Database Syst Rev 2013. https://doi.org/10.1002/14651858.cd007415.pub2.Suche in Google Scholar PubMed PubMed Central

253. Segaloff, A, Weeth, JB, Meyer, KK, Rongone, EL, Cuningham, MEG. Hormonal therapy in cancer of the breast XIX. Effect of oral administration of Δ1-testololactone on clinical course and hormonal excretion. Cancer 1962;15:633–5. https://doi.org/10.1002/1097-0142(196205/06)15:3<633::aid-cncr2820150327>3.0.co;2-l.10.1002/1097-0142(196205/06)15:3<633::AID-CNCR2820150327>3.0.CO;2-LSuche in Google Scholar

254. Goldenberg, IS. Clinical trial of Δ1-testololactone (NSC 23759), medroxy progesterone acetate (NSC 26386) and oxylone acetate (NSC 47438) in advanced female mammary cancer: a report of the cooperative breast cancer group. Cancer 1969;23:109–12. https://doi.org/10.1002/1097-0142(196901)23:1<109::aid-cncr2820230112>3.0.co;2-1.10.1002/1097-0142(196901)23:1<109::AID-CNCR2820230112>3.0.CO;2-1Suche in Google Scholar

255. Fried, J, Thoma, RW, Klingsberg, A. Oxidation of steroids by micro örganisms. iii. Side chain degradation, ring d-cleavage and dehydrogenation in ring A. J Am Chem Soc 1953;75:5764–5. https://doi.org/10.1021/ja01118a530.Suche in Google Scholar

256. Pallea, J, Frosta, B-M, Peterssonb, C, Haslec, H, Hellebostade, M, Kanervaf, J, et al.. Thioguanine pharmacokinetics in induction therapy of children with acute myeloid leukemia. Anti Cancer Drugs 2009;20:7–14. https://doi.org/10.1097/CAD.0b013e32831bc086.Suche in Google Scholar

257. Gee, TS, Yu, KP, Clarkson, BD. Treatment of adult acute leukemia with arabinosylcytosine and thioguanine. Cancer 1969;23:1019–32. https://doi.org/10.1002/1097-0142(196905)23:5<1019::aid-cncr2820230506>3.0.co;2-n.10.1002/1097-0142(196905)23:5<1019::AID-CNCR2820230506>3.0.CO;2-NSuche in Google Scholar

258. Burness, CB, Duggan, ST. Trifluridine/tipiracil: a review in metastatic colorectal cancer. Drugs 2016;76:1393–402. https://doi.org/10.1007/s40265-016-0633-9.Suche in Google Scholar

259. Wheelden, M, Yee, NS. Clinical evaluation of the safety and efficacy of trifluridine/tipiracil in the treatment of advanced gastric/gastroesophageal junction adenocarcinoma: evidence to date. Onco Targets Ther 2020;13:7459–65. https://doi.org/10.2147/ott.s216598.Suche in Google Scholar

260. Suzuki, N, Ito, M, Takechi, T. Discovery and development of trifluridine/tipiracil. Success Drug Discov 2018;3:417–41. https://doi.org/10.1002/9783527808694.ch15.Suche in Google Scholar

261. Wright, CJM, McCormack, PL. Trametinib: first global approval. Drugs 2013;73:1245–54. https://doi.org/10.1007/s40265-013-0096-1.Suche in Google Scholar

262. Zeiser, R. Trametinib. Recent Results Cancer Res 2014:241–8. https://doi.org/10.1007/978-3-642-54490-3_15.Suche in Google Scholar

263. Merseburger, AS, Hupe, MC. An update on triptorelin: current thinking on androgen deprivation therapy for prostate cancer. Adv Ther 2016;33:1072–93. https://doi.org/10.1007/s12325-016-0351-4.Suche in Google Scholar

264. Lundström, EA, Rencken, RK, van Wyk, JH, Coetzee, LJE, Bahlmann, JCM, Reif, S, et al.. Triptorelin six-month formulation in the management of patients with locally advanced and metastatic prostate cancer. Clin Drug Invest 2009;29:757–65. https://doi.org/10.2165/11319690-000000000-00000.Suche in Google Scholar

265. Ploussard, G, Mongiat-Artus, P. Triptorelin in the management of prostate cancer. Future Oncol 2013;9:93–102. https://doi.org/10.2217/fon.12.158.Suche in Google Scholar

266. Robertson, JH. Uracil mustard in the treatment of thrombocythemia. Blood 1970;35:288–97. https://doi.org/10.1182/blood.v35.3.288.288.Suche in Google Scholar

267. Wilkinson, JF, Bourne, MS, Israels, MCG. Treatment of leukaemias and reticuloses with uracil mustard. Br Med J 1963;1:1563–8. https://doi.org/10.1136/bmj.1.5345.1563.Suche in Google Scholar PubMed PubMed Central

268. Buskirk, HH, Crim, JA, Petering, HG, Merritt, K, Johnson, AG. Effect of uracil mustard and several antitumor drugs on the primary antibody response in rats and mice. J Natl Cancer Inst 1965;34:747–58.Suche in Google Scholar

269. Commander, H, Whiteside, G, Perry, C. Vandetanib. Drugs 2011;71:1355–65. https://doi.org/10.2165/11595310-000000000-00000.Suche in Google Scholar PubMed

270. Frampton, JE. Vandetanib. Drugs 2012;72:1423–36. https://doi.org/10.2165/11209300-000000000-00000.Suche in Google Scholar PubMed

271. Wells, SAJ, Robinson, BG, Gagel, RF, Dralle, H, Fagin, JA, Santoro, M, et al.. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30:134–41. https://doi.org/10.1200/jco.2011.35.5040.Suche in Google Scholar

272. Wells, SAJr, Gosnell, JE, Gagel, RRF, Moley, J, Pfister, D, Sosa, JA, et al.. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2009;28:767–72. https://doi.org/10.1200/JCO.2009.23.6604.Suche in Google Scholar PubMed PubMed Central

273. Horbert, R, Pinchuk, B, Davies, P, Alessi, D, Peifer, C. Photoactivatable prodrugs of antimelanoma agent vemurafenib. ACS Chem Biol 2015;10:2099–107. https://doi.org/10.1021/acschembio.5b00174.Suche in Google Scholar PubMed

274. Bollag, G, Tsai, J, Zhang, J, Zhang, C, Ibrahim, P, Nolop, K, et al.. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012;11:873–86. https://doi.org/10.1038/nrd3847.Suche in Google Scholar PubMed

275. Chapman, PB, Hauschild, A, Robert, C, Haanen, JB. Improved survival with vemurafenib in melanoma with braf v600e mutation. N Engl J Med 2011;364:2507–16. https://doi.org/10.1056/nejmoa1103782.Suche in Google Scholar

276. Sosman, JA, Kim, KB, Schuchter, L, Gonzalez, R. Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012;366:707–14. https://doi.org/10.1056/nejmoa1112302.Suche in Google Scholar

Published Online: 2022-02-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Reviews
  3. Recent endeavors in microbial remediation of micro- and nanoplastics
  4. Metal nanoparticles and its application on phenolic and heavy metal pollutants
  5. The story of nitrogen
  6. Recent development of imidazole derivatives as potential anticancer agents
  7. Indole based prostate cancer agents
  8. Lawsone (2-hydroxy-1,4-naphthaquinone) derived anticancer agents
  9. Small modular nuclear reactors are mostly bad policy
  10. A holistic environmental investigation of complementary energy in Alberta
  11. Green synthesis of various saturated S-heterocyclic scaffolds: an update
  12. Recent advances of heterocycle based anticancer hybrids
  13. Molecular docking and MD: mimicking the real biological process
  14. Synthesis of quinazolinone and quinazoline derivatives using green chemistry approach
  15. Nuclear fusion: the promise of endless energy
  16. Finance for Green Chemistry through Currency Mix
  17. Synthesis of bioactive scaffolds catalyzed by agro-waste-based solvent medium
  18. Recent developments in the green synthesis of biologically relevant cinnolines and phthalazines
  19. Detection of Rapid Eye Movement Behaviour Sleep Disorder using Time and Frequency Analysis of EEG Signal Applied on C4-A1 Channels
  20. Recent developments in C–C bond formation catalyzed by solid supported palladium: a greener perspective
  21. Visible-light-mediated metal-free C–Si bond formation reactions
  22. An overview of quinoxaline synthesis by green methods: recent reports
  23. Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs
  24. Synthesis of bioactive natural products and their analogs at room temperature – an update
  25. One-pot multi-component synthesis of diverse bioactive heterocyclic scaffolds involving 6-aminouracil or its N-methyl derivatives as a versatile reagent
  26. Synthesis of new horizons in benzothiazole scaffold and used in anticancer drug development
  27. Triazine based chemical entities for anticancer activity
  28. Modification of kaolinite/muscovite clay for the removal of Pb(II) ions from aqueous media
  29. In silico design of ACE2 mutants for competitive binding of SARS-CoV-2 receptor binding domain with hACE2
  30. Computational study of Cu n AgAu (n = 1–4) clusters invoking DFT based descriptors
  31. Development of an online assessment system to evaluate knowledge on chemical safety and security
  32. Developing a questionnaire for diabetes mellitus type 2 risk effects and precondition factors – multivariate statistical paths
  33. Antioxidant and antibacterial activities of two xanthones derivatives isolated from the leaves extract of Anthocleista schweinfurthii Gilg (Loganiaceae)
  34. The stability increase of α-amylase enzyme from Aspergillus fumigatus using dimethyladipimidate
  35. Sustainability of ameliorative potentials of urea spiked poultry manure biochar types in simulated sodic soils
  36. Cytotoxicity test and antibacterial assay on the compound produced by the isolation and modification of artonin E from Artocarpus kemando Miq.
  37. Effects of alum, soda ash, and carbon dioxide on 40–50 year old concrete wastewater tanks
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0003/pdf?lang=de
Button zum nach oben scrollen