Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
-
Shishan Xue
, Zhiyong Ye
, Herong Zhang , Meiling Guo , Xi Yang , Dengliang He, Shuxin Liu
and Ning Chen
Abstract
With the development of modern industry, the water pollution is getting severer which causes the huge environmental problems. In this work, the novel photocatalytic polyelectrolyte composite hydrogels based on crosslinked poly(2-acrylamido-2-methylpropane sulfonic acid) equipped with graphite carbon nitride (g-C3N4) were exploited via a facile preparation route, which exhibited extremely high removal ratio of 95 % and 94.5 % to Rhodamine B and tetracycline, respectively, through the synergistic effect of adsorption and photodegradation. Remarkably, the recyclability was also observed on the as-prepared hydrogels, which enabled to reuse for 15 times with the few attenuations of removal efficiency to contaminants. This study provides the new insights into the photocatalyst composite hydrogel and possesses the profound significance of the treatment of organic pollutants.
Funding source: Innovation Team of Mianyang Teachers’ College
Award Identifier / Grant number: CXTD2023PY06
Funding source: Mianyang Teachers’ College Start-up Funding
Award Identifier / Grant number: 71/QD2021A11
Funding source: Open Fund of Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province
Award Identifier / Grant number: 2023FTSZ02
Funding source: Natural science Foundation project of Sichuan Province
Award Identifier / Grant number: 2022NSFSC0201
Award Identifier / Grant number: 2024NSFSC1035
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was financial supported by Open Fund of Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province (2023FTSZ02), Mianyang Teachers’ College Start-up Funding (71/QD2021A11), Innovation Team of Mianyang Teachers’ College (CXTD2023PY06), Natural science Foundation project of Sichuan Province (2022NSFSC0201), and Natural science Foundation project of Sichuan Province (2024NSFSC1035).
-
Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding authors on reasonable request.
References
1. Yao, B. D.; Zheng, G. W.; Luan, Y. N.; Wang, L. X.; Xing, X. M.; Wang, Y. Y.; Liu, Y.; He, J. X.; Zhang, F. Q. Cost-effective Bi2WO6 for Efficient Degradation of Rhodamine B and Tetracycline. J. Mater. Sci. Mater. Electron. 2023, 34, 246; https://doi.org/10.1007/s10854-022-09654-z.Search in Google Scholar PubMed PubMed Central
2. Jiang, W. J.; Liu, Y. F.; Wang, J.; Zhang, M.; Luo, W. J.; Zhu, Y. F. Separation-Free Polyaniline/TiO2 3D Hydrogel with High Photocatalytic Activity. Adv. Mater. Interfac. 2016, 3, 1500502; https://doi.org/10.1002/admi.201500502.Search in Google Scholar
3. Karunakaran, K.; Usman, M.; Sillanpää, M. A Review on Superadsorbents with Adsorption Capacity ≥1000 Mg G−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment. Sustainability 2022, 14, 16927; https://doi.org/10.3390/su142416927.Search in Google Scholar
4. Sonal, S.; Mishra, B. K. A Comprehensive Review on the Synthesis and Performance of Different Zirconium-Based Adsorbents for the Removal of Various Water Contaminants. Chem. Eng. J. 2021, 424, 130509; https://doi.org/10.1016/j.cej.2021.130509.Search in Google Scholar
5. Kim, S.; Nam, S. N.; Jang, A.; Jang, M.; Park, C. M.; Son, A.; Her, N.; Heo, J.; Yoon, Y. Review of Adsorption–Membrane Hybrid Systems for Water and Wastewater Treatment. Chemosphere 2022, 286, 131916; https://doi.org/10.1016/j.chemosphere.2021.131916.Search in Google Scholar PubMed
6. Anastopoulos, I.; Pashalidis, I. Environmental Applications of Luffa Cylindrica-Based Adsorbents. J. Mol. Liq. 2020, 319, 114127; https://doi.org/10.1016/j.molliq.2020.114127.Search in Google Scholar
7. Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510; https://doi.org/10.1021/acs.chemrev.8b00299.Search in Google Scholar PubMed
8. Weerasundara, L.; Gabriele, B.; Figoli, A.; Ok, Y. S.; Bundschuh, J. Hydrogels: Novel Materials for Contaminant Removal in Water. A Review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1970; https://doi.org/10.1080/10643389.2020.1776055.Search in Google Scholar
9. Yang, Y. C.; Zhu, Q. L.; Peng, X. W.; Sun, J. J.; Li, C.; Zhang, X. M.; Zhang, H.; Chen, J. B.; Zhou, X. F.; Zeng, H. B.; Zhang, Y. L. Hydrogels for the Removal of the Methylene Blue Dye from Wastewater: A Review. Environ. Chem. Lett. 2022, 20, 2665; https://doi.org/10.1007/s10311-022-01414-z.Search in Google Scholar
10. Niu, Y.; Han, X.; Huang, L.; Song, J. Methylene Blue and Lead(II) Removal via Degradable Interpenetrating Network Hydrogels. J. Chem. Eng. Data 2020, 65, 1954; https://doi.org/10.1021/acs.jced.9b01134.Search in Google Scholar
11. Qiu, J.; Fan, P.; Feng, Y.; Liu, F.; Ling, C.; Li, A. Comparison of the Adsorption Behaviors for Methylene Blue on Two Renewable Gels with Different Physical State. Environ. Pollut. 2019, 254, 113117; https://doi.org/10.1016/j.envpol.2019.113117.Search in Google Scholar PubMed
12. Hao, D.; Huang, Q.; Wei, W.; Bai, X. J.; Ni, B. J. A Reusable, Separation-free and Biodegradable Calcium Alginate/g-C3n4 Microsphere for Sustainable Photocatalytic Wastewater Treatment. J. Clean. Prod. 2021, 314, 128033; https://doi.org/10.1016/j.jclepro.2021.128033.Search in Google Scholar
13. Laura, R. P.; Lizeth, G. P.; Natali, L. M.; Fiderman, M. M.; Julian, U. Evaluation of TiO2 and SnO Supported on Graphene Oxide (TiO2-GO and SnO-GO) Photocatalysts for Treatment of Hospital Wastewater. Water 2020, 12, 1438; https://doi.org/10.3390/w12051438.Search in Google Scholar
14. Nazir, A.; Tahir, M. S.; Kamal, G. M.; Zhang, X.; Tahir, M. B.; Jiang, B.; Safdar, M. Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation. Molecules 2023, 28, 3167; https://doi.org/10.3390/molecules28073167.Search in Google Scholar PubMed PubMed Central
15. Li, C. Q.; Sun, Z. M.; Huang, W. X.; Zheng, S. L. Facile Synthesis of G-C3N4/Montmorillonite Composite with Enhanced Visible Light Photodegradation of Rhodamine B and Tetracycline. J. Taiwan Inst. Chem. Eng. 2016, 66, 363–371; https://doi.org/10.1016/j.jtice.2016.06.014.Search in Google Scholar
16. Quan, W.; Bao, J. Y.; Meng, X. J.; Ning, Y. Q.; Cui, Y. N.; Hu, X. Y.; Yu, S. S.; Tian, H. W. 2D/2D Z-Scheme Photocatalyst of G-C3n4 and Plasmonic Bi Metal Deposited Bi2WO6: Enhanced Separation and Migration of Photoinduced Charges. J. Alloys Compd. 2023, 946, 169396; https://doi.org/10.1016/j.jallcom.2023.169396.Search in Google Scholar
17. Bao, J. Y.; Quan, W.; Ning, Y. Q.; Wang, H. B.; Wei, Q.; Huang, L. Z.; Zhang, W. J.; Ma, Y. X.; Hu, X. Y.; Tian, H. W. Efficient Visible-Light-Driven Tetracycline Degradation and Cr(VI) Reduction over a LaNi1-xFexO3(0≤x≤1)/g-C3n4 Type-II Heterojunction Photocatalyst. Inorg. Chem. 2023, 62, 1086; https://doi.org/10.1021/acs.inorgchem.2c02982.Search in Google Scholar PubMed
18. Myint, T. T.; Ge, J. G.; Niu, H. J. Y.; Chen, J.; Jiao, Z. A Separation-free and Pizza-Structure PAM/GCN/PAA Composite Hydrogel (PCH) in Wastewater Treatment at Visible Light or Solar Light. Sci. Total Environ. 2019, 705, 135821; https://doi.org/10.1016/j.scitotenv.2019.135821.Search in Google Scholar PubMed
19. Bao, J. Y.; Jiang, X. T.; Huang, L. Z.; Quan, W.; Zhang, C. X.; Wang, Y. N.; Wang, H. B.; Zeng, Y.; Zhang, W. J.; Ma, Y. X.; Yu, S. S.; Hu, X. Y.; Tian, H. W. Molybdenum Disulfide Loading on a Z-Scheme Graphitic Carbon Nitride and Lanthanum Nickelate Heterojunction for Enhanced Photocatalysis: Interfacial Charge Transfer and Mechanistic Insights. J. Colloid Interface Sci. 2022, 611, 684; https://doi.org/10.1016/j.jcis.2021.12.106.Search in Google Scholar PubMed
20. Meng, Z. S.; Zhou, B.; Xu, J.; Li, Y. X.; Hu, X. Y.; Tian, H. W. Heterostructured Nitrogen and Sulfur Co-doped Black TiO2/g-C3n4 Photocatalyst with Enhanced Photocatalytic Activity. Chem. Res. Chin. Univ. 2020, 36, 1045; https://doi.org/10.1007/s40242-020-0175-2.Search in Google Scholar
21. Tian, H. W.; Liu, M.; Zheng, W. T. Constructing 2D Graphitic Carbon Nitride Nanosheets/Layered MoS2/Graphene Ternary Nanojunction with Enhanced Photocatalytic Activity. Appl. Catal. B Environ. 2018, 225, 468; https://doi.org/10.1016/j.apcatb.2017.12.019.Search in Google Scholar
22. Chong, M. N., Jin, B., Chow, C. W., Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997, https://doi.org/10.1016/j.watres.2010.02.039.Search in Google Scholar PubMed
23. Fu, G. B.; Xie, R.; Qin, J. W.; Deng, X. B.; Ju, X. J.; Wang, W.; Liu, Z.; Chu, L. Y. Facile Fabrication of Photocatalyst-Immobilized Gel Beads with Interconnected Macropores for the Efficient Removal of Pollutants in Water. Ind. Eng. Chem. Res. 2021, 60, 8762; https://doi.org/10.1021/acs.iecr.1c00971.Search in Google Scholar
24. Zeng, J.; Peng, C.; Wang, X.; Wang, R.; Zhang, N.; Xiong, S. One-Pot Self-Assembled TiO2/Graphene/Poly(acrylamide) Superporous Hybrid for Photocatalytic Degradation of Organic Pollutants. J. Appl. Polym. Sci. 2018, 136, 47033; https://doi.org/10.1002/app.47033.Search in Google Scholar
25. Yue, Y. Y.; Wang, X. H.; Wu, Q. L.; Han, J. Q.; Jiang, J. C. Highly Recyclable and Super-tough Hydrogel Mediated by Dual-Functional TiO2 Nanoparticles toward Efficient Photodegradation of Organic Water Pollutants. J. Colloid Interface Sci. 2020, 564, 99; https://doi.org/10.1016/j.jcis.2019.12.069.Search in Google Scholar PubMed
26. Du, Y. J.; Che, H. A.; Wang, P. F.; Chen, J.; Ao, Y. H. Highly Efficient Removal of Organic Contaminant with Wide Concentration Range by a Novel Self-Cleaning Hydrogel: Mechanism, Degradation Pathway and DFT Calculation. J. Hazard. Mater. 2022, 440, 129738; https://doi.org/10.1016/j.jhazmat.2022.129738.Search in Google Scholar PubMed
27. Kumru, B.; Antonietti, M.; Schmidt, B. V. K. J. Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One-Pot Grafting Approach. Langmuir 2017, 33, 9897–9906; https://doi.org/10.1021/acs.langmuir.7b02441.Search in Google Scholar PubMed
28. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Adv. Funct. Mater. 2012, 22, 4763; https://doi.org/10.1002/adfm.201200922.Search in Google Scholar
29. Jurjevec, S.; Zagar, E.; Kovacic, S. Functional Macroporous Amphoteric Polyelectrolyte Monoliths with Tunable Structures and Properties through Emulsion-Templated Synthesis. J. Colloid Interface Sci. 2020, 575, 480; https://doi.org/10.1016/j.jcis.2020.05.016.Search in Google Scholar PubMed
30. Guo, M. L.; Wu, Y. P.; Xue, S. S.; Xia, Y. M.; Yang, X.; Dzenis, Y.; Li, Z. Y.; Lei, W. W.; Smith, A. T.; Sun, L. Y. A Highly Stretchable, Ultra-tough, Remarkably Tolerant, and Robust Self-Healing Glycerol-Hydrogel for a Dual-Responsive Soft Actuator. J. Mater. Chem. A 2019, 7, 25969; https://doi.org/10.1039/c9ta10183g.Search in Google Scholar
31. Xue, S. S.; He, D. L.; Hu, X. C.; Cao, Y. Q.; Ge, J. L.; Liu, S. X. PVA-Borax/g-C3N4 Nanocomposite Hydrogel with Excellent Mechanical Property and Self-Healing Efficiency. J. Polym. Eng. 2023, 43, 594; https://doi.org/10.1515/polyeng-2023-0069.Search in Google Scholar
32. Ding, H. Y.; Han, D. L.; Han, Y. J.; Liang, Y. Q.; Liu, X. M.; Li, Z. Y.; Zhu, S. L.; Wu, S. L. Visible Light Responsive CuS/Protonated g-C3N4 Heterostructure for Rapid Sterilization. J. Hazard. Mater. 2020, 393, 122423; https://doi.org/10.1016/j.jhazmat.2020.122423.Search in Google Scholar PubMed
33. Lei, H.; Hao, Z. D.; Chen, K.; Chen, Y. H.; Zhang, J. N.; Hu, Z. J.; Rao, P. H.; Huang, Q. Insight into Adsorption Performance and Mechanism on Efficient Removal of Methylene Blue by Accordion-like V2CTx MXene. J. Phys. Chem. Lett. 2020, 11, 4253; https://doi.org/10.1021/acs.jpclett.0c00973.Search in Google Scholar PubMed
34. Wang, T.; Xue, L.; Liu, Y. H.; Fang, T.; Zhang, L.; Xing, B. S. Insight into the Significant Contribution of Intrinsic Defects of Carbon-Based Materials for the Efficient Removal of Tetracycline Antibiotics. Chem. Eng. J. 2022, 435, 134822; https://doi.org/10.1016/j.cej.2022.134822.Search in Google Scholar
35. Hou, M. F.; Ma, C. X.; Zhang, W. D.; Tang, X. Y.; Fan, Y. N.; Wan, H. F. Removal of Rhodamine B Using Iron-Pillared Bentonite. J. Hazard. Mater. 2011, 186, 1118; https://doi.org/10.1016/j.jhazmat.2010.11.110.Search in Google Scholar PubMed
36. Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Search in Google Scholar
37. Morris, J. C.; Weber, W. J. Removal of Biologically-Resistant Pollutants from Waste Waters by Adsorption. In Advances in Water Pollution Research; Pergamon: London, 1964; p p231.10.1016/B978-1-4832-8391-3.50032-4Search in Google Scholar
38. Li, R. P.; Lin, C. Y.; Liu, X. T. Adsorption of Tungstate on Kaolinite: Adsorption Models and Kinetics. RSC Adv. 2016, 6, 19872; https://doi.org/10.1039/c5ra24201k.Search in Google Scholar
39. Ahmari, S. D. A.; Waston, K.; Fong, B. N.; Ruyonga, R. M.; Ali, H. Adsorption Kinetics of 4-N-Nonylphenol on Hematite and Goethite. J. Environ. Chem. Eng. 2018, 6, 4030.10.1016/j.jece.2018.05.052Search in Google Scholar
40. Wang, J. P.; Meng, X. B.; Zheng, Y.; Tian, Y. Q.; Bai, Y. X.; Jin, Z. Y. Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules 2017, 22, 1824; https://doi.org/10.3390/molecules22111824.Search in Google Scholar PubMed PubMed Central
41. Üzüm, G.; Özmen, B. A.; Akgül, E. T.; Yavuz, E. Emulsion-Templated Porous Polymers for Efficient Dye Removal. ACS Omega 2022, 7, 16127; https://doi.org/10.1021/acsomega.2c01472.Search in Google Scholar PubMed PubMed Central
42. Zheng, X.; Zheng, H.; Xiong, Z.; Zhao, R.; Liu, Y.; Zhao, C.; Zheng, C. Novel Anionic Polyacrylamide-Modify-Chitosan Magnetic Composite Nanoparticles with Excellent Adsorption Capacity for Cationic Dyes and pH-independent Adsorption Capability for Metal Ions. Chem. Eng. J. 2020, 392, 123706; https://doi.org/10.1016/j.cej.2019.123706.Search in Google Scholar
43. Deng, J.; Li, X.; Wei, X.; Liu, Y.; Liang, J.; Song, B.; Shao, Y.; Huang, W. Hybrid Silicate-Hydrochar Composite for Highly Efficient Removal of Heavy Metal and Antibiotics: Coadsorption and Mechanism. Chem. Eng. J. 2020, 387, 124097; https://doi.org/10.1016/j.cej.2020.124097.Search in Google Scholar
44. Xu, Y.; Bao, J.; Zhang, X.; Li, W.; Xie, Y.; Sun, S.; Zhao, W.; Zhao, C. Functionalized Polyethersulfone Nanofibrous Membranes with Ultra-high Adsorption Capacity for Organic Dyes by One-step Electrospinning. J. Colloid Interface Sci. 2019, 533, 526; https://doi.org/10.1016/j.jcis.2018.08.072.Search in Google Scholar PubMed
45. Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y. One-Pot Synthesis of Magnetic Graphene Oxide Composites as an Efficient and Recoverable Adsorbent for Cd(II) and Pb(II) Removal from Aqueous Solution. J. Hazard. Mater. 2020, 381, 120914; https://doi.org/10.1016/j.jhazmat.2019.120914.Search in Google Scholar PubMed
46. Kong, W. J.; Gao, Y.; Yue, Q. Y.; Li, Q.; Gao, B. Y.; Kong, Y.; Wang, X. D.; Zhang, P.; Wang, Y. Performance optimization of CdS precipitated graphene oxide/polyacrylic acid composite for efficient photodegradation of chlortetracycline. J. Hazard. Mater. 2020, 388, 121780; https://doi.org/10.1016/j.jhazmat.2019.121780.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0216).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- The latest research status of porous sound-absorbing materials
- Thermal annealing and microwave irradiation in enhancing the mechanical performance of 3D printing CF/PA12 composite
- Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
- Effect of AO 4426 on damping properties of PVA/CPE-AO 2246
- Preparation and Assembly
- Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications
- Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
- Engineering and Processing
- A dynamic pressure strategy to minimize void formation in vacuum infusion
- Design and application of soft robot grippers using low-viscosity silicone by lost core injection molding manufacturing method
Articles in the same Issue
- Frontmatter
- Material Properties
- The latest research status of porous sound-absorbing materials
- Thermal annealing and microwave irradiation in enhancing the mechanical performance of 3D printing CF/PA12 composite
- Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
- Effect of AO 4426 on damping properties of PVA/CPE-AO 2246
- Preparation and Assembly
- Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications
- Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
- Engineering and Processing
- A dynamic pressure strategy to minimize void formation in vacuum infusion
- Design and application of soft robot grippers using low-viscosity silicone by lost core injection molding manufacturing method