Home Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications
Article
Licensed
Unlicensed Requires Authentication

Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications

  • Zahra Kharat , Maliheh Azarnia , Parviz Rashidi Ranjbar EMAIL logo and Mahboubeh Kabiri EMAIL logo
Published/Copyright: January 28, 2025
Become an author with De Gruyter Brill

Abstract

Chitosan-based nanofibers loaded with therapeutic agents are promising for wound treatment but loading hydrophobic compounds remains challenging. To address the limitations of curcumin incorporation in chitosan/polyethylene oxide (CS/PEO) nanofibers, we developed a novel Pluronic-based micelle to encapsulate curcumin, followed by the incorporation of zinc oxide nanoparticles (ZnO-NPs) as an antibacterial agent to improve the performance of the wound dressings’ materials. We successfully fabricated CS/PEO scaffolds via electrospinning, incorporating curcumin-loaded micelles and synthesized ZnO-NPs. Comprehensive morphology characterization was performed using SEM, and the presence of ZnO-NPs and curcumin was verified by EDX and FT-IR spectroscopy. The developed nanofibers showed a slower release profile, with approximately 80 % of curcumin released into the aqueous medium within 24 h and appearing to progress to a steady state by five days. Notably, the nanofiber mats exhibited antibacterial activity against the Gram-positive bacterium Staphylococcus aureus, and supported fibroblast proliferation and attachment, indicating excellent biocompatibility. These findings suggest that the developed nanofiber scaffold, characterized by its controlled drug release, potent antibacterial properties, and biocompatibility, holds promise as an advanced wound dressing material.


Corresponding authors: Parviz Rashidi Ranjbar, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran, E-mail: ; and Mahboubeh Kabiri, Department of Biotechnology, College of Science, University of Tehran, Tehran, 14155-6455, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Z.K. and M.A. did experiments and wrote the manuscript. M.K. and P.R. were supervisors and edited the manuscript. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: The authors declare no conflicts of interest.

  6. Research funding: None declared.

  7. Data availability: The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

1. Kaushik, M.; Niranjan, R.; Thangam, R.; Madhan, B.; Pandiyarasan, V.; Ramachandran, C.; Oh, D.-H.; Venkatasubbu, G. D. Investigations on the Antimicrobial Activity and Wound Healing Potential of ZnO Nanoparticles. Appl. Surf. Sci. 2019, 479, 1169–1177. https://doi.org/10.1016/j.apsusc.2019.02.189.Search in Google Scholar

2. Augustine, R.; Dominic, E. A.; Reju, I.; Kaimal, B.; Kalarikkal, N.; Thomas, S. Electrospun Polycaprolactone Membranes Incorporated with ZnO Nanoparticles as Skin Substitutes with Enhanced Fibroblast Proliferation and Wound Healing. RSC Adv. 2014, 4 (47), 24777. https://doi.org/10.1039/c4ra02450h.Search in Google Scholar

3. Kharat, Z.; Sadri, M.; Kabiri, M. Herbal Extract Loaded Chitosan/PEO Nanocomposites as Antibacterial Coatings of Orthopaedic Implants. Fibers Polym. 2021, 22 (4), 989–999. https://doi.org/10.1007/s12221-021-0490-3.Search in Google Scholar

4. Kharat, Z.; Amiri Goushki, M.; Sarvian, N.; Asad, S.; Dehghan, M. M.; Kabiri, M. Chitosan/PEO Nanofibers Containing Calendula Officinalis Extract: Preparation, Characterization, In Vitro and In Vivo Evaluation for Wound Healing Applications. Int. J. Pharm. 2021, 609, 121132. https://doi.org/10.1016/j.ijpharm.2021.121132.Search in Google Scholar PubMed

5. Khorasani, M. T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. Incorporation of ZnO Nanoparticles into Heparinised Polyvinyl Alcohol/Chitosan Hydrogels for Wound Dressing Application. Int. J. Biol. Macromol. 2018, 114, 1203–1215. https://doi.org/10.1016/j.ijbiomac.2018.04.010.Search in Google Scholar PubMed

6. Almasian, A.; Najafi, F.; Eftekhari, M.; Shams Ardekani, M. R.; Sharifzadeh, M.; Khanavi, M. Preparation of Polyurethane/Pluronic F127 Nanofibers Containing Peppermint Extract Loaded Gelatin Nanoparticles for Diabetic Wounds Healing: Characterization, In Vitro, and In Vivo Studies. Evid.-Base Compl. Alternative Med. 2021, 2021, 1–16. https://doi.org/10.1155/2021/6646702.Search in Google Scholar PubMed PubMed Central

7. Adamczak, A.; Ożarowski, M.; Karpiński, T. M. Curcumin, a Natural Antimicrobial Agent with Strain-specific Activity. Pharmaceuticals 2020, 13 (7), 153. https://doi.org/10.3390/ph13070153.Search in Google Scholar PubMed PubMed Central

8. Karthikeyan, C.; Varaprasad, K.; Akbari-Fakhrabadi, A.; Hameed, A. S. H.; Sadiku, R. Biomolecule Chitosan, Curcumin and ZnO-Based Antibacterial Nanomaterial, via a One-Pot Process. Carbohydr. Polym. 2020, 249, 116825. https://doi.org/10.1016/j.carbpol.2020.116825.Search in Google Scholar PubMed

9. Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C. R. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics 2022, 11 (3), 322. https://doi.org/10.3390/antibiotics11030322.Search in Google Scholar PubMed PubMed Central

10. Mosallanezhad, P.; Nazockdast, H.; Ahmadi, Z.; Rostami, A. Fabrication and Characterization of Polycaprolactone/Chitosan Nanofibers Containing Antibacterial Agents of Curcumin and ZnO Nanoparticles for Use as Wound Dressing. Front Bioeng. Biotechnol. 2022, 10. https://doi.org/10.3389/fbioe.2022.1027351.Search in Google Scholar PubMed PubMed Central

11. Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11 (3), 459. https://doi.org/10.3390/antiox11030459.Search in Google Scholar PubMed PubMed Central

12. Golchin, A.; Hosseinzadeh, S.; Staji, M.; Soleimani, M.; Ardeshirylajimi, A.; Khojasteh, A. Biological Behavior of the Curcumin Incorporated Chitosan/Poly(Vinyl Alcohol) Nanofibers for Biomedical Applications. J. Cell. Biochem. 2019, 120 (9), 15410–15421. https://doi.org/10.1002/jcb.28808.Search in Google Scholar PubMed

13. Jirofti, N.; Golandi, M.; Movaffagh, J.; Ahmadi, F. S.; Kalalinia, F. Improvement of the Wound-Healing Process by Curcumin-Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In Vitro and In Vivo Studies. ACS Biomater. Sci. Eng. 2021, 7 (8), 3886–3897. https://doi.org/10.1021/acsbiomaterials.1c00131.Search in Google Scholar PubMed

14. Cai, Y.; Sun, Z.; Fang, X.; Fang, X.; Xiao, F.; Wang, Y.; Chen, M. S. Characterization and Anti-cancer Activity of Pluronic F68–Curcumin Conjugate Micelles. Drug Deliv. 2016, 23 (7), 2587–2595. https://doi.org/10.3109/10717544.2015.1037970.Search in Google Scholar PubMed

15. Yang, R.; Zhang, S.; Kong, D.; Gao, X.; Zhao, Y.; Wang, Z. Biodegradable Polymer-Curcumin Conjugate Micelles Enhance the Loading and Delivery of Low-Potency Curcumin. Pharm. Res. 2012, 29 (12), 3512–3525. https://doi.org/10.1007/s11095-012-0848-8.Search in Google Scholar PubMed

16. Sahu, A.; Kasoju, N.; Goswami, P.; Bora, U. Encapsulation of Curcumin in Pluronic Block Copolymer Micelles for Drug Delivery Applications. J. Biomater. Appl. 2011, 25 (6), 619–639. https://doi.org/10.1177/0885328209357110.Search in Google Scholar PubMed

17. Vaidya, F. U.; Sharma, R.; Shaikh, S.; Ray, D.; Aswal, V. K.; Pathak, C. Pluronic Micelles Encapsulated Curcumin Manifests Apoptotic Cell Death and Inhibits Pro-inflammatory Cytokines in Human Breast Adenocarcinoma Cells. Cancer Rep. (Hoboken) 2019, 2 (1), e1133. https://doi.org/10.1002/cnr2.1133.Search in Google Scholar PubMed PubMed Central

18. Rodríguez-Tobías, H.; Morales, G.; Ledezma, A.; Romero, J.; Grande, D. Novel Antibacterial Electrospun Mats Based on Poly(d,l-Lactide) Nanofibers and Zinc Oxide Nanoparticles. J. Mater. Sci. 2014, 49 (24), 8373–8385. https://doi.org/10.1007/s10853-014-8547-y.Search in Google Scholar

19. Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W. M. Adsorption, Antimicrobial and Wound Healing Activities of Biosynthesised Zinc Oxide Nanoparticles. Chem. Pap. 2021, 75 (3), 893–907. https://doi.org/10.1007/s11696-020-01343-7.Search in Google Scholar

20. Gao, Y.; Han, Y.; Cui, M.; Tey, H. L.; Wang, L.; Xu, C. ZnO Nanoparticles as an Antimicrobial Tissue Adhesive for Skin Wound Closure. J. Mater. Chem. B 2017, 5 (23), 4535–4541. https://doi.org/10.1039/C7TB00664K.Search in Google Scholar PubMed

21. Cleetus, CM; Alvarez Primo, F.; Fregoso, G.; Lalitha Raveendran, N.; Noveron, J. C.; Spencer, C. T.; Ramana, C. V.; Joddar, B. Alginate Hydrogels with Embedded ZnO Nanoparticles for Wound Healing Therapy. Int. J. Nanomed. 2020, 5097–5111; https://doi.org/10.2147/ijn.s255937.Search in Google Scholar PubMed PubMed Central

22. Ghaee, A.; Bagheri-Khoulenjani, S.; Amir Afshar, H.; Bogheiri, H. Biomimetic Nanocomposite Scaffolds Based on Surface Modified PCL-Nanofibers Containing Curcumin Embedded in Chitosan/Gelatin for Skin Regeneration. Compos. B Eng. 2019, 177, 107339. https://doi.org/10.1016/j.compositesb.2019.107339.Search in Google Scholar

23. Bui, H. T.; Chung, O. H.; Dela Cruz, J.; Park, J. S. Fabrication and Characterization of Electrospun Curcumin-Loaded Polycaprolactone-Polyethylene Glycol Nanofibers for Enhanced Wound Healing. Macromol. Res. 2014, 22 (12), 1288–1296. https://doi.org/10.1007/s13233-014-2179-6.Search in Google Scholar

24. Manikandan, B.; Endo, T.; Kaneko, S.; Murali, K. R.; John, R. Properties of Sol Gel Synthesized ZnO Nanoparticles. J. Mater. Sci.: Mater. Electron. 2018, 29 (11), 9474–9485. https://doi.org/10.1007/s10854-018-8981-8.Search in Google Scholar

25. Periyat, P.; Ullattil, S. G. Sol–Gel Derived Nanocrystalline ZnO Photoanode Film for Dye Sensitized Solar Cells. Mater. Sci. Semicond. Process. 2015, 31, 139–146. https://doi.org/10.1016/j.mssp.2014.11.022.Search in Google Scholar

26. Gorinova, C.; Aluani, D.; Yordanov, Y.; Kondeva-Burdina, M.; Tzankova, V.; Popova, C.; Yoncheva, K. In Vitro Evaluation of Antioxidant and Neuroprotective Effects of Curcumin Loaded in Pluronic Micelles. Biotechnol. Biotechnol. Equip. 2016, 30 (5), 991–997. https://doi.org/10.1080/13102818.2016.1186500.Search in Google Scholar

27. Nicolau Costa, K. M.; Sato, M. R.; Barbosa, T. L. A.; Rodrigues, M. G. F.; Medeiros, A. C. D.; Damasceno, B. P. G. D L.; Oshiro-Júnior, J. A. Curcumin-Loaded Micelles Dispersed in Ureasil-Polyether Materials for a Novel Sustained-Release Formulation. Pharmaceutics 2021, 13 (5), 675. https://doi.org/10.3390/pharmaceutics13050675.Search in Google Scholar PubMed PubMed Central

28. Thapa, R. K.; Cazzador, F.; Grønlien, K. G.; Tønnesen, H. H. Effect of Curcumin and Cosolvents on the Micellization of Pluronic F127 in Aqueous Solution. Colloids Surf. B Biointerfaces 2020, 195, 111250. https://doi.org/10.1016/j.colsurfb.2020.111250.Search in Google Scholar PubMed

29. Tønnesen, H. H.; Másson, M.; Loftsson, T. Studies of Curcumin and Curcuminoids. XXVII. Cyclodextrin Complexation: Solubility, Chemical and Photochemical Stability. Int. J. Pharm. 2002, 244 (1–2), 127–135. https://doi.org/10.1016/S0378-5173(02)00323-X.Search in Google Scholar

30. Ganguly, R.; Kumar, S.; Kunwar, A.; Nath, S.; Sarma, H. D.; Tripathi, A.; Verma, G.; Chaudhari, D. P.; Aswal, V. K.; Melo, J. S. Structural and Therapeutic Properties of Curcumin Solubilized Pluronic F127 Micellar Solutions and Hydrogels. J. Mol. Liq. 2020, 314, 113591. https://doi.org/10.1016/j.molliq.2020.113591.Search in Google Scholar

31. Krausz, A. E.; Adler, B. L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R. A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; Harper, S.; Friedman, J. M.; Nosanchuk, J. D.; Friedman, A. J. Curcumin-Encapsulated Nanoparticles as Innovative Antimicrobial and Wound Healing Agent. Nanomedicine 2015, 11 (1), 195–206. https://doi.org/10.1016/j.nano.2014.09.004.Search in Google Scholar PubMed PubMed Central

32. Trigo Gutierrez, J. K.; Zanatta, G. C.; Ortega, A. L. M.; Balastegui, M. I. C.; Sanitá, P. V.; Pavarina, A. C.; Barbugli, P. A.; Mima, E. G. D O. Encapsulation of Curcumin in Polymeric Nanoparticles for Antimicrobial Photodynamic Therapy. PLoS One 2017, 12 (11), e0187418. https://doi.org/10.1371/journal.pone.0187418.Search in Google Scholar PubMed PubMed Central

33. Bagheri, M.; Validi, M.; Gholipour, A.; Makvandi, P.; Sharifi, E. Chitosan Nanofiber Biocomposites for Potential Wound Healing Applications: Antioxidant Activity with Synergic Antibacterial Effect. Bioeng. Transl. Med. 2022, 7 (1). https://doi.org/10.1002/btm2.10254.Search in Google Scholar PubMed PubMed Central

34. Estrada-Villegas, G. M.; Del Río-De Vicente, J. I.; Argueta-Figueroa, L.; González-Pérez, G. UV-Initiated Crosslinking of Electrospun Chitosan/Poly(Ethylene Oxide) Nanofibers Doped with ZnO-Nanoparticles: Development of Antibacterial Nanofibrous Hydrogel. MRS Commun. 2020, 10 (4), 642–651. https://doi.org/10.1557/mrc.2020.74.Search in Google Scholar PubMed PubMed Central

35. Loo, C.-Y.; Rohanizadeh, R.; Young, P. M.; Traini, D.; Cavaliere, R.; Whitchurch, C. B.; Lee, W.-H. Combination of Silver Nanoparticles and Curcumin Nanoparticles for Enhanced Anti-biofilm Activities. J. Agric. Food Chem. 2016, 64 (12), 2513–2522. https://doi.org/10.1021/acs.jafc.5b04559.Search in Google Scholar PubMed

36. Dubey, P.; Barker, S. A.; Craig, D. Q. M. Design and Characterization of Cyclosporine A-Loaded Nanofibers for Enhanced Drug Dissolution. ACS Omega 2020, 5 (2), 1003–1013. https://doi.org/10.1021/acsomega.9b02616.Search in Google Scholar PubMed PubMed Central

37. Amjadi, S.; Emaminia, S.; Heyat Davudian, S.; Pourmohammad, S.; Hamishehkar, H.; Roufegarinejad, L. Preparation and Characterization of Gelatin-Based Nanocomposite Containing Chitosan Nanofiber and ZnO Nanoparticles. Carbohydr. Polym. 2019, 216, 376–384. https://doi.org/10.1016/j.carbpol.2019.03.062.Search in Google Scholar PubMed

38. Jebel, S.; Almasi, H. Morphological, Physical, Antimicrobial and Release Properties of ZnO Nanoparticles-Loaded Bacterial Cellulose Films. Carbohydr. Polym. 2016, 149, 8–19. https://doi.org/10.1016/j.carbpol.2016.04.089.Search in Google Scholar PubMed

39. Ranjbar-Mohammadi, M.; Shakoori, P.; Arab-Bafrani, Z. Design and Characterization of Keratin/PVA-PLA Nanofibers Containing Hybrids of Nanofibrillated Chitosan/ZnO Nanoparticles. Int. J. Biol. Macromol. 2021, 187, 554–565. https://doi.org/10.1016/j.ijbiomac.2021.07.160.Search in Google Scholar PubMed

40. Anitha, S.; Brabu, B.; John Thiruvadigal, D.; Gopalakrishnan, C.; Natarajan, T. S. Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-Composite Membranes of Cellulose Acetate and ZnO. Carbohydr. Polym. 2013, 97 (2), 856–863. https://doi.org/10.1016/j.carbpol.2013.05.003.Search in Google Scholar PubMed

41. Liu, Y.; Li, Y.; Deng, L.; Zou, L.; Feng, F.; Zhang, H. Hydrophobic Ethylcellulose/Gelatin Nanofibers Containing Zinc Oxide Nanoparticles for Antimicrobial Packaging. J. Agric. Food Chem. 2018, 66 (36), 9498–9506. https://doi.org/10.1021/acs.jafc.8b03267.Search in Google Scholar PubMed

42. Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-Zinc Oxide Nanoparticle Composite Coating for Active Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. https://doi.org/10.1016/j.ifset.2016.10.010.Search in Google Scholar

43. Hegge, A. B.; Bruzell, E.; Kristensen, S.; Tønnesen, H. H. Photoinactivation of Staphylococcus Epidermidis Biofilms and Suspensions by the Hydrophobic Photosensitizer Curcumin – Effect of Selected Nanocarrier. Eur. J. Pharm. Sci. 2012, 47 (1), 65–74. https://doi.org/10.1016/j.ejps.2012.05.002.Search in Google Scholar PubMed

44. Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. Pluronic® Block Copolymers as Novel Polymer Therapeutics for Drug and Gene Delivery. J. Contr. Release 2002, 82 (2–3), 189–212. https://doi.org/10.1016/S0168-3659(02)00009-3.Search in Google Scholar PubMed

45. Norouzi, M. A.; Montazer, M.; Harifi, T.; Karimi, P. Flower Buds like PVA/ZnO Composite Nanofibers Assembly: Antibacterial, In Vivo Wound Healing, Cytotoxicity and Histological Studies. Polym. Test. 2021, 93, 106914. https://doi.org/10.1016/j.polymertesting.2020.106914.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0182).


Received: 2024-09-09
Accepted: 2024-12-21
Published Online: 2025-01-28
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0182/html
Scroll to top button