Abstract
Chitosan-based nanofibers loaded with therapeutic agents are promising for wound treatment but loading hydrophobic compounds remains challenging. To address the limitations of curcumin incorporation in chitosan/polyethylene oxide (CS/PEO) nanofibers, we developed a novel Pluronic-based micelle to encapsulate curcumin, followed by the incorporation of zinc oxide nanoparticles (ZnO-NPs) as an antibacterial agent to improve the performance of the wound dressings’ materials. We successfully fabricated CS/PEO scaffolds via electrospinning, incorporating curcumin-loaded micelles and synthesized ZnO-NPs. Comprehensive morphology characterization was performed using SEM, and the presence of ZnO-NPs and curcumin was verified by EDX and FT-IR spectroscopy. The developed nanofibers showed a slower release profile, with approximately 80 % of curcumin released into the aqueous medium within 24 h and appearing to progress to a steady state by five days. Notably, the nanofiber mats exhibited antibacterial activity against the Gram-positive bacterium Staphylococcus aureus, and supported fibroblast proliferation and attachment, indicating excellent biocompatibility. These findings suggest that the developed nanofiber scaffold, characterized by its controlled drug release, potent antibacterial properties, and biocompatibility, holds promise as an advanced wound dressing material.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Z.K. and M.A. did experiments and wrote the manuscript. M.K. and P.R. were supervisors and edited the manuscript. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Conflict of interest: The authors declare no conflicts of interest.
-
Research funding: None declared.
-
Data availability: The data that support the findings of this study are available from the corresponding authors upon reasonable request.
References
1. Kaushik, M.; Niranjan, R.; Thangam, R.; Madhan, B.; Pandiyarasan, V.; Ramachandran, C.; Oh, D.-H.; Venkatasubbu, G. D. Investigations on the Antimicrobial Activity and Wound Healing Potential of ZnO Nanoparticles. Appl. Surf. Sci. 2019, 479, 1169–1177. https://doi.org/10.1016/j.apsusc.2019.02.189.Search in Google Scholar
2. Augustine, R.; Dominic, E. A.; Reju, I.; Kaimal, B.; Kalarikkal, N.; Thomas, S. Electrospun Polycaprolactone Membranes Incorporated with ZnO Nanoparticles as Skin Substitutes with Enhanced Fibroblast Proliferation and Wound Healing. RSC Adv. 2014, 4 (47), 24777. https://doi.org/10.1039/c4ra02450h.Search in Google Scholar
3. Kharat, Z.; Sadri, M.; Kabiri, M. Herbal Extract Loaded Chitosan/PEO Nanocomposites as Antibacterial Coatings of Orthopaedic Implants. Fibers Polym. 2021, 22 (4), 989–999. https://doi.org/10.1007/s12221-021-0490-3.Search in Google Scholar
4. Kharat, Z.; Amiri Goushki, M.; Sarvian, N.; Asad, S.; Dehghan, M. M.; Kabiri, M. Chitosan/PEO Nanofibers Containing Calendula Officinalis Extract: Preparation, Characterization, In Vitro and In Vivo Evaluation for Wound Healing Applications. Int. J. Pharm. 2021, 609, 121132. https://doi.org/10.1016/j.ijpharm.2021.121132.Search in Google Scholar PubMed
5. Khorasani, M. T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. Incorporation of ZnO Nanoparticles into Heparinised Polyvinyl Alcohol/Chitosan Hydrogels for Wound Dressing Application. Int. J. Biol. Macromol. 2018, 114, 1203–1215. https://doi.org/10.1016/j.ijbiomac.2018.04.010.Search in Google Scholar PubMed
6. Almasian, A.; Najafi, F.; Eftekhari, M.; Shams Ardekani, M. R.; Sharifzadeh, M.; Khanavi, M. Preparation of Polyurethane/Pluronic F127 Nanofibers Containing Peppermint Extract Loaded Gelatin Nanoparticles for Diabetic Wounds Healing: Characterization, In Vitro, and In Vivo Studies. Evid.-Base Compl. Alternative Med. 2021, 2021, 1–16. https://doi.org/10.1155/2021/6646702.Search in Google Scholar PubMed PubMed Central
7. Adamczak, A.; Ożarowski, M.; Karpiński, T. M. Curcumin, a Natural Antimicrobial Agent with Strain-specific Activity. Pharmaceuticals 2020, 13 (7), 153. https://doi.org/10.3390/ph13070153.Search in Google Scholar PubMed PubMed Central
8. Karthikeyan, C.; Varaprasad, K.; Akbari-Fakhrabadi, A.; Hameed, A. S. H.; Sadiku, R. Biomolecule Chitosan, Curcumin and ZnO-Based Antibacterial Nanomaterial, via a One-Pot Process. Carbohydr. Polym. 2020, 249, 116825. https://doi.org/10.1016/j.carbpol.2020.116825.Search in Google Scholar PubMed
9. Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C. R. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics 2022, 11 (3), 322. https://doi.org/10.3390/antibiotics11030322.Search in Google Scholar PubMed PubMed Central
10. Mosallanezhad, P.; Nazockdast, H.; Ahmadi, Z.; Rostami, A. Fabrication and Characterization of Polycaprolactone/Chitosan Nanofibers Containing Antibacterial Agents of Curcumin and ZnO Nanoparticles for Use as Wound Dressing. Front Bioeng. Biotechnol. 2022, 10. https://doi.org/10.3389/fbioe.2022.1027351.Search in Google Scholar PubMed PubMed Central
11. Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11 (3), 459. https://doi.org/10.3390/antiox11030459.Search in Google Scholar PubMed PubMed Central
12. Golchin, A.; Hosseinzadeh, S.; Staji, M.; Soleimani, M.; Ardeshirylajimi, A.; Khojasteh, A. Biological Behavior of the Curcumin Incorporated Chitosan/Poly(Vinyl Alcohol) Nanofibers for Biomedical Applications. J. Cell. Biochem. 2019, 120 (9), 15410–15421. https://doi.org/10.1002/jcb.28808.Search in Google Scholar PubMed
13. Jirofti, N.; Golandi, M.; Movaffagh, J.; Ahmadi, F. S.; Kalalinia, F. Improvement of the Wound-Healing Process by Curcumin-Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In Vitro and In Vivo Studies. ACS Biomater. Sci. Eng. 2021, 7 (8), 3886–3897. https://doi.org/10.1021/acsbiomaterials.1c00131.Search in Google Scholar PubMed
14. Cai, Y.; Sun, Z.; Fang, X.; Fang, X.; Xiao, F.; Wang, Y.; Chen, M. S. Characterization and Anti-cancer Activity of Pluronic F68–Curcumin Conjugate Micelles. Drug Deliv. 2016, 23 (7), 2587–2595. https://doi.org/10.3109/10717544.2015.1037970.Search in Google Scholar PubMed
15. Yang, R.; Zhang, S.; Kong, D.; Gao, X.; Zhao, Y.; Wang, Z. Biodegradable Polymer-Curcumin Conjugate Micelles Enhance the Loading and Delivery of Low-Potency Curcumin. Pharm. Res. 2012, 29 (12), 3512–3525. https://doi.org/10.1007/s11095-012-0848-8.Search in Google Scholar PubMed
16. Sahu, A.; Kasoju, N.; Goswami, P.; Bora, U. Encapsulation of Curcumin in Pluronic Block Copolymer Micelles for Drug Delivery Applications. J. Biomater. Appl. 2011, 25 (6), 619–639. https://doi.org/10.1177/0885328209357110.Search in Google Scholar PubMed
17. Vaidya, F. U.; Sharma, R.; Shaikh, S.; Ray, D.; Aswal, V. K.; Pathak, C. Pluronic Micelles Encapsulated Curcumin Manifests Apoptotic Cell Death and Inhibits Pro-inflammatory Cytokines in Human Breast Adenocarcinoma Cells. Cancer Rep. (Hoboken) 2019, 2 (1), e1133. https://doi.org/10.1002/cnr2.1133.Search in Google Scholar PubMed PubMed Central
18. Rodríguez-Tobías, H.; Morales, G.; Ledezma, A.; Romero, J.; Grande, D. Novel Antibacterial Electrospun Mats Based on Poly(d,l-Lactide) Nanofibers and Zinc Oxide Nanoparticles. J. Mater. Sci. 2014, 49 (24), 8373–8385. https://doi.org/10.1007/s10853-014-8547-y.Search in Google Scholar
19. Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W. M. Adsorption, Antimicrobial and Wound Healing Activities of Biosynthesised Zinc Oxide Nanoparticles. Chem. Pap. 2021, 75 (3), 893–907. https://doi.org/10.1007/s11696-020-01343-7.Search in Google Scholar
20. Gao, Y.; Han, Y.; Cui, M.; Tey, H. L.; Wang, L.; Xu, C. ZnO Nanoparticles as an Antimicrobial Tissue Adhesive for Skin Wound Closure. J. Mater. Chem. B 2017, 5 (23), 4535–4541. https://doi.org/10.1039/C7TB00664K.Search in Google Scholar PubMed
21. Cleetus, CM; Alvarez Primo, F.; Fregoso, G.; Lalitha Raveendran, N.; Noveron, J. C.; Spencer, C. T.; Ramana, C. V.; Joddar, B. Alginate Hydrogels with Embedded ZnO Nanoparticles for Wound Healing Therapy. Int. J. Nanomed. 2020, 5097–5111; https://doi.org/10.2147/ijn.s255937.Search in Google Scholar PubMed PubMed Central
22. Ghaee, A.; Bagheri-Khoulenjani, S.; Amir Afshar, H.; Bogheiri, H. Biomimetic Nanocomposite Scaffolds Based on Surface Modified PCL-Nanofibers Containing Curcumin Embedded in Chitosan/Gelatin for Skin Regeneration. Compos. B Eng. 2019, 177, 107339. https://doi.org/10.1016/j.compositesb.2019.107339.Search in Google Scholar
23. Bui, H. T.; Chung, O. H.; Dela Cruz, J.; Park, J. S. Fabrication and Characterization of Electrospun Curcumin-Loaded Polycaprolactone-Polyethylene Glycol Nanofibers for Enhanced Wound Healing. Macromol. Res. 2014, 22 (12), 1288–1296. https://doi.org/10.1007/s13233-014-2179-6.Search in Google Scholar
24. Manikandan, B.; Endo, T.; Kaneko, S.; Murali, K. R.; John, R. Properties of Sol Gel Synthesized ZnO Nanoparticles. J. Mater. Sci.: Mater. Electron. 2018, 29 (11), 9474–9485. https://doi.org/10.1007/s10854-018-8981-8.Search in Google Scholar
25. Periyat, P.; Ullattil, S. G. Sol–Gel Derived Nanocrystalline ZnO Photoanode Film for Dye Sensitized Solar Cells. Mater. Sci. Semicond. Process. 2015, 31, 139–146. https://doi.org/10.1016/j.mssp.2014.11.022.Search in Google Scholar
26. Gorinova, C.; Aluani, D.; Yordanov, Y.; Kondeva-Burdina, M.; Tzankova, V.; Popova, C.; Yoncheva, K. In Vitro Evaluation of Antioxidant and Neuroprotective Effects of Curcumin Loaded in Pluronic Micelles. Biotechnol. Biotechnol. Equip. 2016, 30 (5), 991–997. https://doi.org/10.1080/13102818.2016.1186500.Search in Google Scholar
27. Nicolau Costa, K. M.; Sato, M. R.; Barbosa, T. L. A.; Rodrigues, M. G. F.; Medeiros, A. C. D.; Damasceno, B. P. G. D L.; Oshiro-Júnior, J. A. Curcumin-Loaded Micelles Dispersed in Ureasil-Polyether Materials for a Novel Sustained-Release Formulation. Pharmaceutics 2021, 13 (5), 675. https://doi.org/10.3390/pharmaceutics13050675.Search in Google Scholar PubMed PubMed Central
28. Thapa, R. K.; Cazzador, F.; Grønlien, K. G.; Tønnesen, H. H. Effect of Curcumin and Cosolvents on the Micellization of Pluronic F127 in Aqueous Solution. Colloids Surf. B Biointerfaces 2020, 195, 111250. https://doi.org/10.1016/j.colsurfb.2020.111250.Search in Google Scholar PubMed
29. Tønnesen, H. H.; Másson, M.; Loftsson, T. Studies of Curcumin and Curcuminoids. XXVII. Cyclodextrin Complexation: Solubility, Chemical and Photochemical Stability. Int. J. Pharm. 2002, 244 (1–2), 127–135. https://doi.org/10.1016/S0378-5173(02)00323-X.Search in Google Scholar
30. Ganguly, R.; Kumar, S.; Kunwar, A.; Nath, S.; Sarma, H. D.; Tripathi, A.; Verma, G.; Chaudhari, D. P.; Aswal, V. K.; Melo, J. S. Structural and Therapeutic Properties of Curcumin Solubilized Pluronic F127 Micellar Solutions and Hydrogels. J. Mol. Liq. 2020, 314, 113591. https://doi.org/10.1016/j.molliq.2020.113591.Search in Google Scholar
31. Krausz, A. E.; Adler, B. L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R. A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; Harper, S.; Friedman, J. M.; Nosanchuk, J. D.; Friedman, A. J. Curcumin-Encapsulated Nanoparticles as Innovative Antimicrobial and Wound Healing Agent. Nanomedicine 2015, 11 (1), 195–206. https://doi.org/10.1016/j.nano.2014.09.004.Search in Google Scholar PubMed PubMed Central
32. Trigo Gutierrez, J. K.; Zanatta, G. C.; Ortega, A. L. M.; Balastegui, M. I. C.; Sanitá, P. V.; Pavarina, A. C.; Barbugli, P. A.; Mima, E. G. D O. Encapsulation of Curcumin in Polymeric Nanoparticles for Antimicrobial Photodynamic Therapy. PLoS One 2017, 12 (11), e0187418. https://doi.org/10.1371/journal.pone.0187418.Search in Google Scholar PubMed PubMed Central
33. Bagheri, M.; Validi, M.; Gholipour, A.; Makvandi, P.; Sharifi, E. Chitosan Nanofiber Biocomposites for Potential Wound Healing Applications: Antioxidant Activity with Synergic Antibacterial Effect. Bioeng. Transl. Med. 2022, 7 (1). https://doi.org/10.1002/btm2.10254.Search in Google Scholar PubMed PubMed Central
34. Estrada-Villegas, G. M.; Del Río-De Vicente, J. I.; Argueta-Figueroa, L.; González-Pérez, G. UV-Initiated Crosslinking of Electrospun Chitosan/Poly(Ethylene Oxide) Nanofibers Doped with ZnO-Nanoparticles: Development of Antibacterial Nanofibrous Hydrogel. MRS Commun. 2020, 10 (4), 642–651. https://doi.org/10.1557/mrc.2020.74.Search in Google Scholar PubMed PubMed Central
35. Loo, C.-Y.; Rohanizadeh, R.; Young, P. M.; Traini, D.; Cavaliere, R.; Whitchurch, C. B.; Lee, W.-H. Combination of Silver Nanoparticles and Curcumin Nanoparticles for Enhanced Anti-biofilm Activities. J. Agric. Food Chem. 2016, 64 (12), 2513–2522. https://doi.org/10.1021/acs.jafc.5b04559.Search in Google Scholar PubMed
36. Dubey, P.; Barker, S. A.; Craig, D. Q. M. Design and Characterization of Cyclosporine A-Loaded Nanofibers for Enhanced Drug Dissolution. ACS Omega 2020, 5 (2), 1003–1013. https://doi.org/10.1021/acsomega.9b02616.Search in Google Scholar PubMed PubMed Central
37. Amjadi, S.; Emaminia, S.; Heyat Davudian, S.; Pourmohammad, S.; Hamishehkar, H.; Roufegarinejad, L. Preparation and Characterization of Gelatin-Based Nanocomposite Containing Chitosan Nanofiber and ZnO Nanoparticles. Carbohydr. Polym. 2019, 216, 376–384. https://doi.org/10.1016/j.carbpol.2019.03.062.Search in Google Scholar PubMed
38. Jebel, S.; Almasi, H. Morphological, Physical, Antimicrobial and Release Properties of ZnO Nanoparticles-Loaded Bacterial Cellulose Films. Carbohydr. Polym. 2016, 149, 8–19. https://doi.org/10.1016/j.carbpol.2016.04.089.Search in Google Scholar PubMed
39. Ranjbar-Mohammadi, M.; Shakoori, P.; Arab-Bafrani, Z. Design and Characterization of Keratin/PVA-PLA Nanofibers Containing Hybrids of Nanofibrillated Chitosan/ZnO Nanoparticles. Int. J. Biol. Macromol. 2021, 187, 554–565. https://doi.org/10.1016/j.ijbiomac.2021.07.160.Search in Google Scholar PubMed
40. Anitha, S.; Brabu, B.; John Thiruvadigal, D.; Gopalakrishnan, C.; Natarajan, T. S. Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-Composite Membranes of Cellulose Acetate and ZnO. Carbohydr. Polym. 2013, 97 (2), 856–863. https://doi.org/10.1016/j.carbpol.2013.05.003.Search in Google Scholar PubMed
41. Liu, Y.; Li, Y.; Deng, L.; Zou, L.; Feng, F.; Zhang, H. Hydrophobic Ethylcellulose/Gelatin Nanofibers Containing Zinc Oxide Nanoparticles for Antimicrobial Packaging. J. Agric. Food Chem. 2018, 66 (36), 9498–9506. https://doi.org/10.1021/acs.jafc.8b03267.Search in Google Scholar PubMed
42. Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-Zinc Oxide Nanoparticle Composite Coating for Active Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. https://doi.org/10.1016/j.ifset.2016.10.010.Search in Google Scholar
43. Hegge, A. B.; Bruzell, E.; Kristensen, S.; Tønnesen, H. H. Photoinactivation of Staphylococcus Epidermidis Biofilms and Suspensions by the Hydrophobic Photosensitizer Curcumin – Effect of Selected Nanocarrier. Eur. J. Pharm. Sci. 2012, 47 (1), 65–74. https://doi.org/10.1016/j.ejps.2012.05.002.Search in Google Scholar PubMed
44. Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. Pluronic® Block Copolymers as Novel Polymer Therapeutics for Drug and Gene Delivery. J. Contr. Release 2002, 82 (2–3), 189–212. https://doi.org/10.1016/S0168-3659(02)00009-3.Search in Google Scholar PubMed
45. Norouzi, M. A.; Montazer, M.; Harifi, T.; Karimi, P. Flower Buds like PVA/ZnO Composite Nanofibers Assembly: Antibacterial, In Vivo Wound Healing, Cytotoxicity and Histological Studies. Polym. Test. 2021, 93, 106914. https://doi.org/10.1016/j.polymertesting.2020.106914.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0182).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- The latest research status of porous sound-absorbing materials
- Thermal annealing and microwave irradiation in enhancing the mechanical performance of 3D printing CF/PA12 composite
- Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
- Effect of AO 4426 on damping properties of PVA/CPE-AO 2246
- Preparation and Assembly
- Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications
- Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
- Engineering and Processing
- A dynamic pressure strategy to minimize void formation in vacuum infusion
- Design and application of soft robot grippers using low-viscosity silicone by lost core injection molding manufacturing method
Articles in the same Issue
- Frontmatter
- Material Properties
- The latest research status of porous sound-absorbing materials
- Thermal annealing and microwave irradiation in enhancing the mechanical performance of 3D printing CF/PA12 composite
- Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
- Effect of AO 4426 on damping properties of PVA/CPE-AO 2246
- Preparation and Assembly
- Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications
- Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
- Engineering and Processing
- A dynamic pressure strategy to minimize void formation in vacuum infusion
- Design and application of soft robot grippers using low-viscosity silicone by lost core injection molding manufacturing method