Home Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
Article
Licensed
Unlicensed Requires Authentication

Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender

  • Cheng Zhong , Liuliu Ma , Xihao Wu , Shengren Si and Hao Duan ORCID logo EMAIL logo
Published/Copyright: January 24, 2025
Become an author with De Gruyter Brill

Abstract

This research explored the impact of a novel polymer chain extender with high epoxy functionality on the crystallization properties of polylactic acid (PLA). FT-IR and Raman spectrometer were utilized to characterize the structure of PLA after chain extension. The dosage of the chain extender (HSMG) in PLA was varied to investigate its effect on the crystallization behavior of PLA via differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X-ray diffraction analysis (XRD). The results indicated that incorporating HSMG into PLA significantly altered its crystallization behavior, without significantly changing its crystal structure.


Corresponding author: Hao Duan, Fine-blend Polymer (Shanghai) Co., Ltd., Shanghai, P.R. China; and Department of Materials Science, Fudan University, Shanghai, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Duan Hao: conceived aSnd designed the experiments. Zhong Cheng: analyzed the data. Ma Liuliu: contributed reagents/materials/analysis tools. Si Shengren: Performed the experiments. Zhong Cheng, Duan Hao, Wu Xihao: wrote the paper. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

  8. Patents: Patents have been filed for related work.

References

1. Leslie, H. A.; Van Velzen, M. J.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199.Search in Google Scholar PubMed

2. Smith, M.; Love, D. C.; Rochman, C. M.; Neff, R. A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. https://doi.org/10.1007/s40572-018-0206-z.Search in Google Scholar PubMed PubMed Central

3. Duan, H.; Shi, P. W.; Fan, Z. Y.; Liu, D. Y.; Xia, Q. Enhancing PLA/PBAT Blends Properties with High Epoxy-Functional Polymer as a Compatibilizer. J. Phys.: Conf. Ser. 2024, 2888, 12009; https://doi.org/10.1088/1742-6596/2888/1/012009.Search in Google Scholar

4. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of Thermal Stability, Rheological and Mechanical Properties of PLA, PBAT and Their Blends by Reactive Extrusion with Functionalized Epoxy. Polym. Degrad. Stab. 2012, 97 (10), 1898–1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028.Search in Google Scholar

5. Weng, Y.; Jin, Y.; Meng, Q.; Wang, L.; Zhang, M.; Wang, Y. Biodegradation Behavior of Poly (Butylene adipate-co-terephthalate)(PBAT), Poly (Lactic acid)(PLA), and Their Blend under Soil Conditions. Polym. Test. 2013, 32 (5), 918–926. https://doi.org/10.1016/j.polymertesting.2013.05.001.Search in Google Scholar

6. Musioł, M.; Sikorska, W.; Janeczek, H.; Wałach, W.; Hercog, A.; Johnston, B.; Rydz, J. (Bio) Degradable Polymeric Materials for a Sustainable Future–Part 1. Organic Recycling of PLA/PBAT Blends in the Form of Prototype Packages with Long Shelf-Life. Waste Manage. 2018, 77, 447–454. https://doi.org/10.1016/j.wasman.2018.04.030.Search in Google Scholar PubMed

7. Ren, Y.; Hu, J.; Yang, M.; Weng, Y. Biodegradation Behavior of Poly (Lactic Acid) (PLA), Poly (Butylene Adipate-Co-Terephthalate) (PBAT), and Their Blends under Digested Sludge Conditions. J. Polym. Environ. 2019, 27, 2784–2792. https://doi.org/10.1007/s10924-019-01563-3.Search in Google Scholar

8. Sun, Z.; Zhang, B.; Bian, X.; Feng, L.; Zhang, H.; Duan, R.; Sun, J.; Pang, X.; Chen, W.; Chen, X. Synergistic Effect of PLA–PBAT–PLA Tri-block Copolymers with Two Molecular Weights as Compatibilizers on the Mechanical and Rheological Properties of PLA/PBAT Blends. RSC Adv. 2015, 5 (90), 73842–73849. https://doi.org/10.1039/C5RA11019J.Search in Google Scholar

9. Ding, Y.; Lu, B.; Wang, P.; Ji, J. PLA-PBAT-PLA Tri-block Copolymers: Effective Compatibilizers for Promotion of the Mechanical and Rheological Properties of PLA/PBAT Blends. Polym. Degrad. Stab. 2018, 147, 41–48. https://doi.org/10.1016/j.polymdegradstab.2017.11.012.Search in Google Scholar

10. Yang, J.; Li, W.; Mu, B.; Xu, H.; Hou, X.; Yang, Y. 3D Printing of Toughened Enantiomeric PLA/PBAT/PMMA Quaternary System with Complete Stereo-Complexation: Compatibilizer Architecture Effects. Polymer 2022, 242, 124590. https://doi.org/10.1016/j.polymer.2022.124590.Search in Google Scholar

11. Ding, Y.; Feng, W.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PEG-PLA Tri-block Copolymers: Effective Compatibilizers for Promotion of the Interfacial Structure and Mechanical Properties of PLA/PBAT Blends. Polymer 2018, 146, 179–187. https://doi.org/10.1016/j.polymer.2018.05.037.Search in Google Scholar

12. Zhou, Y.; Qiu, S.; Waterhouse, G. I. N.; Zhang, K.; Xu, J. Enhancing the Properties of PBAT/PLA Composites with Novel Phosphorus-Based Ionic Liquid Compatibilizers. Mater. Today Commun. 2021, 27, 102407. https://doi.org/10.1016/j.mtcomm.2021.102407.Search in Google Scholar

13. Kumar, M.; Mohanty, S.; Nayak, S. K.; Parvaiz, M. R. Effect of Glycidyl Methacrylate (GMA) on the Thermal, Mechanical and Morphological Property of Biodegradable PLA/PBAT Blend and its Nanocomposites. Bioresour. Technol. 2010, 101 (21), 8406–8415. https://doi.org/10.1016/j.biortech.2010.05.075.Search in Google Scholar PubMed

14. Arruda, L. C.; Magaton, M.; Bretas, R. E. S.; Ueki, M. M. Influence of Chain Extender on Mechanical, Thermal and Morphological Properties of Blown Films of PLA/PBAT Blends. Polym. Test. 2015, 43, 27–37. https://doi.org/10.1016/j.polymertesting.2015.02.005.Search in Google Scholar

15. Corre, Y.; Duchet, J.; Reignier, J.; Maazouz, A. Melt Strengthening of Poly (Lactic Acid) through Reactive Extrusion with Epoxy-Functionalized Chains. Rheol. Acta 2011, 50, 613–629. https://doi.org/10.1007/s00397-011-0538-1.Search in Google Scholar

16. Li, L.; Wang, H.; Jiang, T.; Hu, C.; Zhang, J.; Zheng, H.; Zeng, G. Effect of Epoxy Chain Extenders on Molecular Structure and Properties of Polylactic Acid. J. Appl. Polym. Sci. 2023, 140 (36). https://doi.org/10.1002/app.54379.Search in Google Scholar

17. Li, J.; Zhang, Q.; Fan, T.; Gong, L.; Ye, W.; Fan, Z.; Cao, L.; Liu, Q. Crystallization and Biocompatibility Enhancement of 3D-Printed Poly(l-Lactide) Vascular Stents with Long Chain Branching Structures. CrystEngComm 2020, 22, 728–739. https://doi.org/10.1039/C9CE01477B.Search in Google Scholar

18. Nerka, M.; Ramsay, J.; Ramsay, B.; Kontopoulou, M. Dramatic Improvements in Strain Hardening and Crystallization Kinetics of PLA by Simple Reactive Modification in the Melt State. Macromol. Mater. Eng. 2014, 299 (12), 1419–1424. https://doi.org/10.1002/mame.201400078.Search in Google Scholar

19. Najafi, N.; Heuzey, M. C.; Carreau, P. J.; Wood-Adams, P. M. Control of Thermal Degradation of Polylactic Acid (PLA)-clay Nanocomposites Using Chain Extenders. Polym. Degrad. Stab. 2012, 97 (4), 554–565. https://doi.org/10.1016/j.polymdegradstab.2012.01.016.Search in Google Scholar

20. Najafi, N.; Heuzey, M. C.; Carreau, P. J. Polylactide (PLA)-clay Nanocomposites Prepared by Melt Compounding in the Presence of a Chain Extender. Compos. Sci. Technol. 2012, 72 (5), 608–615. https://doi.org/10.1016/j.compscitech.2012.01.005.Search in Google Scholar

21. Barletta, N.; Moretti, P.; Pizzi, E.; Puopolo, M.; Tagliaferri, V.; Vesco, S. Engineering of Poly Lactic Acids (PLAs) for Melt Processing: Material Structure and Thermal Properties. J. Appl. Polym. Sci. 2017, 134 (8). https://doi.org/10.1002/app.44504.Search in Google Scholar

22. Hao, Y.; Li, Y.; Liu, Z.; Yan, X.; Tong, Y.; Zhang, H. Thermal, Mechanical and Rheological Properties of Poly(lactic Acid) Chain Extended with Polyaryl Polymethylene Isocyanate. Fibers Polym. 2019, 20, 1766–1773. https://doi.org/10.1007/s12221-019-8579-7.Search in Google Scholar

23. Tuna, B.; Ozkoc, G. Effects of Diisocyanate and Polymeric Epoxidized Chain Extenders on the Properties of Recycled Poly(Lactic Acid). J. Polym. Environ. 2017, 25, 983–993. https://doi.org/10.1007/s10924-016-0856-6.Search in Google Scholar

24. Najafi, N.; Heuzey, M. C.; Carreau, P. J. Crystallization Behavior and Morphology of Polylactide and PLA/clay Nanocomposites in the Presence of Chain Extenders. Polym. Eng. Sci. 2013, 53 (5), 1053–1064. https://doi.org/10.1002/pen.23355.Search in Google Scholar

25. Khankarn, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S. Effect of Chain Extenders on Thermal and Mechanical Properties of Poly(lactic Acid) at High Processing Temperatures: Potential Application in PLA/Polyamide 6 Blend. Polym. Degrad. Stab. 2014, 108, 232–240. https://doi.org/10.1016/j.polymdegradstab.2014.04.019.Search in Google Scholar

26. Zhou, M.; Zhou, P.; Xiong, P.; Qian, X.; Zheng, H. Crystallization, Rheology and Foam Morphology of Branched PLA Prepared by Novel Type of Chain Extender. Macromol. Res. 2015, 23, 231–236. https://doi.org/10.1007/s13233-015-3018-0.Search in Google Scholar

27. Duan, H.; Zhu, C.; Fan, Z. Eliminating the Thermal Degradation of Polylactic Acid by the Modification of a Macromolecular Epoxy‐type Chain Extender. J. Appl. Polym. Sci. 2024, 141 (2), e54769. https://doi.org/10.1002/app.54769.Search in Google Scholar

28. Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. https://doi.org/10.1063/1.1750631.Search in Google Scholar

29. Zhang, H.; Shao, C.; Kong, W.; Wang, Y.; Cao, W.; Liu, C.; Shen, C. Memory Effect on the Crystallization Behavior of Poly (Lactic Acid) Probed by Infrared Spectroscopy. Eur. Polym. J. 2017, 91, 376–385. https://doi.org/10.1016/j.eurpolymj.2017.04.016.Search in Google Scholar

30. Vasanthan, N.; Ly, O. Effect of Microstructure on Hydrolytic Degradation Studies of Poly (L-lactic Acid) by FTIR Spectroscopy and Differential Scanning Calorimetry. Polym. Degrad. Stab. 2009, 94 (9), 1364–1372. https://doi.org/10.1016/j.polymdegradstab.2009.05.015.Search in Google Scholar

31. Liubimovskii, S. O.; Novikov, V. S.; Sagitova, E. A.; Kuznetsov, S. M.; Bakirov, A.V.; Dmitryakov, P. V.; Sedush, N. G.; Chvalun, S. N.; Ustynyuk, L. Y.; Kuzmin, V. V.; Vasimov, D. D.; Moskovskiy, M. N.; Nikolaeva, G.Y Raman Evaluation of the Crystallinity Degree and Composition of Poly (L-Lactide-Co-ε-Caprolactone). Spectrochim. Acta, Part A 2024, 310, 123876. https://doi.org/10.1016/j.saa.2024.123876.Search in Google Scholar PubMed

32. Beltrán, F. R.; Infante, C.; Ulagares de la, O.; Urreaga, J. M. Mechanical Recycling of Poly (Lactic Acid): Evaluation of a Chain Extender and a Peroxide as Additives for Upgrading the Recycled Plastic. J. Cleaner Prod. 2019, 219, 46–56. https://doi.org/10.1016/j.jclepro.2019.01.206.Search in Google Scholar

33. Hernández-López, M.; Correa-Pacheco, Z. N.; Bautista-Baños, S.; Zavaleta-Avejar, L.; Benítez-Jiménez, J. J.; Sabino-Gutiérrez, M. A.; Ortega-Gudiño, P. Bio-based Composite Fibers from Pine Essential Oil and PLA/PBAT Polymer Blend. Morphological, Physicochemical, Thermal and Mechanical Characterization. Mater. Chem. Phys. 2019, 234, 345–353. https://doi.org/10.1016/j.matchemphys.2019.01.034.Search in Google Scholar

34. Ozkoc, G.; Kemaloglu, S. Morphology, Biodegradability, Mechanical, and Thermal Properties of Nanocomposite Films Based on PLA and Plasticized PLA. J. Appl. Polym. Sci. 2009, 114 (4), 2481–2487. https://doi.org/10.1002/app.30772.Search in Google Scholar

35. Deng, S.; Bai, H.; Liu, Z.; Zhang, Q.; Fu, Q. Toward Supertough and Heat-Resistant Stereocomplex-type Polylactide/Elastomer Blends with Impressive Melt Stability via In Situ Formation of Graft Copolymer during One-Pot Reactive Melt Blending. Macromol 2019, 52 (4), 1718–1730. https://doi.org/10.1021/acs.macromol.8b02626.Search in Google Scholar

36. Liubimovskii, S. O.; Novikov, V. S.; Sagitova, E. A.; Kuznetsov, S. M.; Bakirov, A. V.; Dmitryakov, P. V.; Sedush, N. G.; Chvalun, S. N.; Ustynyuk, L.Yu.; Kuzmin, V. V.; Vasimov, D. D.; Moskovskiy, M. N.; Nikolaeva, G. Y. Raman Evaluation of the Crystallinity Degree and Composition of Poly (L-Lactide-Co-ε-Caprolactone). Spectrochim. Acta, Part A 2024, 310, 123876. https://doi.org/10.1016/j.saa.2024.123876.Search in Google Scholar

37. Zhao, L.; Kong, J.; Tian, X.; Zhang, J.; Qin, S. Isothermal Crystallization of Poly (L-Lactide) and Poly (Butylene Adipate) Crystalline/crystalline Blends. Polym. J. 2014, 46 (6), 323–329. https://doi.org/10.1038/pj.2014.8.Search in Google Scholar

38. Huang, Z.; Zhong, M.; Yang, H.; Xu, E.; Ji, D.; Joseph, P.; Zhang, R. In-situ Isothermal Crystallization of Poly (L-lactide). Polymer 2021, 13 (19), 3377. https://doi.org/10.3390/polym13193377.Search in Google Scholar PubMed PubMed Central

39. Hughes, A. N.; Tai, H.; Tochwin, A.; Wang, W. Biodegradable and Biocompatible PDLLA-PEG1k-PDLLA Diacrylate Macromers: Synthesis, Characterisation and Preparation of Soluble Hyperbranched Polymers and Crosslinked Hydrogels. Processes 2017, 5 (2), 18. https://doi.org/10.3390/pr5020018.Search in Google Scholar

40. Petersson, L.; Kvien, I.; Oksman, K. Structure and Thermal Properties of Poly(lactic Acid)/cellulose Whiskers Nanocomposite Materials. Compos. Sci. Technol. 2007, 67 (11), 2535–2544. https://doi.org/10.1016/j.compscitech.2006.12.012.Search in Google Scholar

41. Ohtani, Y.; Okumura, K.; Kawaguchi, A. Crystallization Behavior of Amorphous Poly(l-Lactide). J. Macromol. Sci., Part B. 2003, 42 (3–4), 875–888. https://doi.org/10.1081/MB-120021612.Search in Google Scholar

42. Androsch, R.; Di Lorenzo, M. L. Kinetics of Crystal Nucleation of poly(L-Lactic Acid). Polymer 2013, 54 (26), 6882–6885. https://doi.org/10.1016/j.polymer.2013.10.056.Search in Google Scholar

43. Deru, Q.; Robert, T. K. Crystallinity Determination of Polylactide by FT-Raman Spectrometry. Appl. Spectrosc. 1998, 52 (4), 488; https://doi.org/10.1366/0003702981943950.Search in Google Scholar

44. Yasuniwa, M.; Tsubakihara, S.; Iura, K.; Ono, Y.; Dan, Y.; Takahashi, K. Crystallization Behavior of Poly(l-Lactic Acid). Polymer 2006, 47 (21), 7554–7563. https://doi.org/10.1016/j.polymer.2006.08.054.Search in Google Scholar

45. He, Y.; Fan, Z.; Hu, Y.; Wu, T.; Wei, J.; Li, S. DSC Analysis of Isothermal Melt-Crystallization, Glass Transition and Melting Behavior of Poly(l-Lactide) with Different Melocular Weights. Eur. Polym. J. 2007, 43 (10), 4431–4439. https://doi.org/10.1016/j.eurpolymj.2007.07.007.Search in Google Scholar

46. Yu, C.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y.; Pan, P. Crystallization Behavior and Crystalline Structural Changes of Poly (Glycolic Acid) Investigated via Temperature-Variable WAXD and FTIR Analysis. CrystEngComm 2016, 18 (40), 7894–7902. https://doi.org/10.1039/C6CE01623E.Search in Google Scholar

Received: 2024-10-21
Accepted: 2024-12-22
Published Online: 2025-01-24
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0224/html
Scroll to top button