Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
Abstract
This research explored the impact of a novel polymer chain extender with high epoxy functionality on the crystallization properties of polylactic acid (PLA). FT-IR and Raman spectrometer were utilized to characterize the structure of PLA after chain extension. The dosage of the chain extender (HSMG) in PLA was varied to investigate its effect on the crystallization behavior of PLA via differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X-ray diffraction analysis (XRD). The results indicated that incorporating HSMG into PLA significantly altered its crystallization behavior, without significantly changing its crystal structure.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Duan Hao: conceived aSnd designed the experiments. Zhong Cheng: analyzed the data. Ma Liuliu: contributed reagents/materials/analysis tools. Si Shengren: Performed the experiments. Zhong Cheng, Duan Hao, Wu Xihao: wrote the paper. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
-
Patents: Patents have been filed for related work.
References
1. Leslie, H. A.; Van Velzen, M. J.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199.Search in Google Scholar PubMed
2. Smith, M.; Love, D. C.; Rochman, C. M.; Neff, R. A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. https://doi.org/10.1007/s40572-018-0206-z.Search in Google Scholar PubMed PubMed Central
3. Duan, H.; Shi, P. W.; Fan, Z. Y.; Liu, D. Y.; Xia, Q. Enhancing PLA/PBAT Blends Properties with High Epoxy-Functional Polymer as a Compatibilizer. J. Phys.: Conf. Ser. 2024, 2888, 12009; https://doi.org/10.1088/1742-6596/2888/1/012009.Search in Google Scholar
4. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of Thermal Stability, Rheological and Mechanical Properties of PLA, PBAT and Their Blends by Reactive Extrusion with Functionalized Epoxy. Polym. Degrad. Stab. 2012, 97 (10), 1898–1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028.Search in Google Scholar
5. Weng, Y.; Jin, Y.; Meng, Q.; Wang, L.; Zhang, M.; Wang, Y. Biodegradation Behavior of Poly (Butylene adipate-co-terephthalate)(PBAT), Poly (Lactic acid)(PLA), and Their Blend under Soil Conditions. Polym. Test. 2013, 32 (5), 918–926. https://doi.org/10.1016/j.polymertesting.2013.05.001.Search in Google Scholar
6. Musioł, M.; Sikorska, W.; Janeczek, H.; Wałach, W.; Hercog, A.; Johnston, B.; Rydz, J. (Bio) Degradable Polymeric Materials for a Sustainable Future–Part 1. Organic Recycling of PLA/PBAT Blends in the Form of Prototype Packages with Long Shelf-Life. Waste Manage. 2018, 77, 447–454. https://doi.org/10.1016/j.wasman.2018.04.030.Search in Google Scholar PubMed
7. Ren, Y.; Hu, J.; Yang, M.; Weng, Y. Biodegradation Behavior of Poly (Lactic Acid) (PLA), Poly (Butylene Adipate-Co-Terephthalate) (PBAT), and Their Blends under Digested Sludge Conditions. J. Polym. Environ. 2019, 27, 2784–2792. https://doi.org/10.1007/s10924-019-01563-3.Search in Google Scholar
8. Sun, Z.; Zhang, B.; Bian, X.; Feng, L.; Zhang, H.; Duan, R.; Sun, J.; Pang, X.; Chen, W.; Chen, X. Synergistic Effect of PLA–PBAT–PLA Tri-block Copolymers with Two Molecular Weights as Compatibilizers on the Mechanical and Rheological Properties of PLA/PBAT Blends. RSC Adv. 2015, 5 (90), 73842–73849. https://doi.org/10.1039/C5RA11019J.Search in Google Scholar
9. Ding, Y.; Lu, B.; Wang, P.; Ji, J. PLA-PBAT-PLA Tri-block Copolymers: Effective Compatibilizers for Promotion of the Mechanical and Rheological Properties of PLA/PBAT Blends. Polym. Degrad. Stab. 2018, 147, 41–48. https://doi.org/10.1016/j.polymdegradstab.2017.11.012.Search in Google Scholar
10. Yang, J.; Li, W.; Mu, B.; Xu, H.; Hou, X.; Yang, Y. 3D Printing of Toughened Enantiomeric PLA/PBAT/PMMA Quaternary System with Complete Stereo-Complexation: Compatibilizer Architecture Effects. Polymer 2022, 242, 124590. https://doi.org/10.1016/j.polymer.2022.124590.Search in Google Scholar
11. Ding, Y.; Feng, W.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PEG-PLA Tri-block Copolymers: Effective Compatibilizers for Promotion of the Interfacial Structure and Mechanical Properties of PLA/PBAT Blends. Polymer 2018, 146, 179–187. https://doi.org/10.1016/j.polymer.2018.05.037.Search in Google Scholar
12. Zhou, Y.; Qiu, S.; Waterhouse, G. I. N.; Zhang, K.; Xu, J. Enhancing the Properties of PBAT/PLA Composites with Novel Phosphorus-Based Ionic Liquid Compatibilizers. Mater. Today Commun. 2021, 27, 102407. https://doi.org/10.1016/j.mtcomm.2021.102407.Search in Google Scholar
13. Kumar, M.; Mohanty, S.; Nayak, S. K.; Parvaiz, M. R. Effect of Glycidyl Methacrylate (GMA) on the Thermal, Mechanical and Morphological Property of Biodegradable PLA/PBAT Blend and its Nanocomposites. Bioresour. Technol. 2010, 101 (21), 8406–8415. https://doi.org/10.1016/j.biortech.2010.05.075.Search in Google Scholar PubMed
14. Arruda, L. C.; Magaton, M.; Bretas, R. E. S.; Ueki, M. M. Influence of Chain Extender on Mechanical, Thermal and Morphological Properties of Blown Films of PLA/PBAT Blends. Polym. Test. 2015, 43, 27–37. https://doi.org/10.1016/j.polymertesting.2015.02.005.Search in Google Scholar
15. Corre, Y.; Duchet, J.; Reignier, J.; Maazouz, A. Melt Strengthening of Poly (Lactic Acid) through Reactive Extrusion with Epoxy-Functionalized Chains. Rheol. Acta 2011, 50, 613–629. https://doi.org/10.1007/s00397-011-0538-1.Search in Google Scholar
16. Li, L.; Wang, H.; Jiang, T.; Hu, C.; Zhang, J.; Zheng, H.; Zeng, G. Effect of Epoxy Chain Extenders on Molecular Structure and Properties of Polylactic Acid. J. Appl. Polym. Sci. 2023, 140 (36). https://doi.org/10.1002/app.54379.Search in Google Scholar
17. Li, J.; Zhang, Q.; Fan, T.; Gong, L.; Ye, W.; Fan, Z.; Cao, L.; Liu, Q. Crystallization and Biocompatibility Enhancement of 3D-Printed Poly(l-Lactide) Vascular Stents with Long Chain Branching Structures. CrystEngComm 2020, 22, 728–739. https://doi.org/10.1039/C9CE01477B.Search in Google Scholar
18. Nerka, M.; Ramsay, J.; Ramsay, B.; Kontopoulou, M. Dramatic Improvements in Strain Hardening and Crystallization Kinetics of PLA by Simple Reactive Modification in the Melt State. Macromol. Mater. Eng. 2014, 299 (12), 1419–1424. https://doi.org/10.1002/mame.201400078.Search in Google Scholar
19. Najafi, N.; Heuzey, M. C.; Carreau, P. J.; Wood-Adams, P. M. Control of Thermal Degradation of Polylactic Acid (PLA)-clay Nanocomposites Using Chain Extenders. Polym. Degrad. Stab. 2012, 97 (4), 554–565. https://doi.org/10.1016/j.polymdegradstab.2012.01.016.Search in Google Scholar
20. Najafi, N.; Heuzey, M. C.; Carreau, P. J. Polylactide (PLA)-clay Nanocomposites Prepared by Melt Compounding in the Presence of a Chain Extender. Compos. Sci. Technol. 2012, 72 (5), 608–615. https://doi.org/10.1016/j.compscitech.2012.01.005.Search in Google Scholar
21. Barletta, N.; Moretti, P.; Pizzi, E.; Puopolo, M.; Tagliaferri, V.; Vesco, S. Engineering of Poly Lactic Acids (PLAs) for Melt Processing: Material Structure and Thermal Properties. J. Appl. Polym. Sci. 2017, 134 (8). https://doi.org/10.1002/app.44504.Search in Google Scholar
22. Hao, Y.; Li, Y.; Liu, Z.; Yan, X.; Tong, Y.; Zhang, H. Thermal, Mechanical and Rheological Properties of Poly(lactic Acid) Chain Extended with Polyaryl Polymethylene Isocyanate. Fibers Polym. 2019, 20, 1766–1773. https://doi.org/10.1007/s12221-019-8579-7.Search in Google Scholar
23. Tuna, B.; Ozkoc, G. Effects of Diisocyanate and Polymeric Epoxidized Chain Extenders on the Properties of Recycled Poly(Lactic Acid). J. Polym. Environ. 2017, 25, 983–993. https://doi.org/10.1007/s10924-016-0856-6.Search in Google Scholar
24. Najafi, N.; Heuzey, M. C.; Carreau, P. J. Crystallization Behavior and Morphology of Polylactide and PLA/clay Nanocomposites in the Presence of Chain Extenders. Polym. Eng. Sci. 2013, 53 (5), 1053–1064. https://doi.org/10.1002/pen.23355.Search in Google Scholar
25. Khankarn, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S. Effect of Chain Extenders on Thermal and Mechanical Properties of Poly(lactic Acid) at High Processing Temperatures: Potential Application in PLA/Polyamide 6 Blend. Polym. Degrad. Stab. 2014, 108, 232–240. https://doi.org/10.1016/j.polymdegradstab.2014.04.019.Search in Google Scholar
26. Zhou, M.; Zhou, P.; Xiong, P.; Qian, X.; Zheng, H. Crystallization, Rheology and Foam Morphology of Branched PLA Prepared by Novel Type of Chain Extender. Macromol. Res. 2015, 23, 231–236. https://doi.org/10.1007/s13233-015-3018-0.Search in Google Scholar
27. Duan, H.; Zhu, C.; Fan, Z. Eliminating the Thermal Degradation of Polylactic Acid by the Modification of a Macromolecular Epoxy‐type Chain Extender. J. Appl. Polym. Sci. 2024, 141 (2), e54769. https://doi.org/10.1002/app.54769.Search in Google Scholar
28. Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. https://doi.org/10.1063/1.1750631.Search in Google Scholar
29. Zhang, H.; Shao, C.; Kong, W.; Wang, Y.; Cao, W.; Liu, C.; Shen, C. Memory Effect on the Crystallization Behavior of Poly (Lactic Acid) Probed by Infrared Spectroscopy. Eur. Polym. J. 2017, 91, 376–385. https://doi.org/10.1016/j.eurpolymj.2017.04.016.Search in Google Scholar
30. Vasanthan, N.; Ly, O. Effect of Microstructure on Hydrolytic Degradation Studies of Poly (L-lactic Acid) by FTIR Spectroscopy and Differential Scanning Calorimetry. Polym. Degrad. Stab. 2009, 94 (9), 1364–1372. https://doi.org/10.1016/j.polymdegradstab.2009.05.015.Search in Google Scholar
31. Liubimovskii, S. O.; Novikov, V. S.; Sagitova, E. A.; Kuznetsov, S. M.; Bakirov, A.V.; Dmitryakov, P. V.; Sedush, N. G.; Chvalun, S. N.; Ustynyuk, L. Y.; Kuzmin, V. V.; Vasimov, D. D.; Moskovskiy, M. N.; Nikolaeva, G.Y Raman Evaluation of the Crystallinity Degree and Composition of Poly (L-Lactide-Co-ε-Caprolactone). Spectrochim. Acta, Part A 2024, 310, 123876. https://doi.org/10.1016/j.saa.2024.123876.Search in Google Scholar PubMed
32. Beltrán, F. R.; Infante, C.; Ulagares de la, O.; Urreaga, J. M. Mechanical Recycling of Poly (Lactic Acid): Evaluation of a Chain Extender and a Peroxide as Additives for Upgrading the Recycled Plastic. J. Cleaner Prod. 2019, 219, 46–56. https://doi.org/10.1016/j.jclepro.2019.01.206.Search in Google Scholar
33. Hernández-López, M.; Correa-Pacheco, Z. N.; Bautista-Baños, S.; Zavaleta-Avejar, L.; Benítez-Jiménez, J. J.; Sabino-Gutiérrez, M. A.; Ortega-Gudiño, P. Bio-based Composite Fibers from Pine Essential Oil and PLA/PBAT Polymer Blend. Morphological, Physicochemical, Thermal and Mechanical Characterization. Mater. Chem. Phys. 2019, 234, 345–353. https://doi.org/10.1016/j.matchemphys.2019.01.034.Search in Google Scholar
34. Ozkoc, G.; Kemaloglu, S. Morphology, Biodegradability, Mechanical, and Thermal Properties of Nanocomposite Films Based on PLA and Plasticized PLA. J. Appl. Polym. Sci. 2009, 114 (4), 2481–2487. https://doi.org/10.1002/app.30772.Search in Google Scholar
35. Deng, S.; Bai, H.; Liu, Z.; Zhang, Q.; Fu, Q. Toward Supertough and Heat-Resistant Stereocomplex-type Polylactide/Elastomer Blends with Impressive Melt Stability via In Situ Formation of Graft Copolymer during One-Pot Reactive Melt Blending. Macromol 2019, 52 (4), 1718–1730. https://doi.org/10.1021/acs.macromol.8b02626.Search in Google Scholar
36. Liubimovskii, S. O.; Novikov, V. S.; Sagitova, E. A.; Kuznetsov, S. M.; Bakirov, A. V.; Dmitryakov, P. V.; Sedush, N. G.; Chvalun, S. N.; Ustynyuk, L.Yu.; Kuzmin, V. V.; Vasimov, D. D.; Moskovskiy, M. N.; Nikolaeva, G. Y. Raman Evaluation of the Crystallinity Degree and Composition of Poly (L-Lactide-Co-ε-Caprolactone). Spectrochim. Acta, Part A 2024, 310, 123876. https://doi.org/10.1016/j.saa.2024.123876.Search in Google Scholar
37. Zhao, L.; Kong, J.; Tian, X.; Zhang, J.; Qin, S. Isothermal Crystallization of Poly (L-Lactide) and Poly (Butylene Adipate) Crystalline/crystalline Blends. Polym. J. 2014, 46 (6), 323–329. https://doi.org/10.1038/pj.2014.8.Search in Google Scholar
38. Huang, Z.; Zhong, M.; Yang, H.; Xu, E.; Ji, D.; Joseph, P.; Zhang, R. In-situ Isothermal Crystallization of Poly (L-lactide). Polymer 2021, 13 (19), 3377. https://doi.org/10.3390/polym13193377.Search in Google Scholar PubMed PubMed Central
39. Hughes, A. N.; Tai, H.; Tochwin, A.; Wang, W. Biodegradable and Biocompatible PDLLA-PEG1k-PDLLA Diacrylate Macromers: Synthesis, Characterisation and Preparation of Soluble Hyperbranched Polymers and Crosslinked Hydrogels. Processes 2017, 5 (2), 18. https://doi.org/10.3390/pr5020018.Search in Google Scholar
40. Petersson, L.; Kvien, I.; Oksman, K. Structure and Thermal Properties of Poly(lactic Acid)/cellulose Whiskers Nanocomposite Materials. Compos. Sci. Technol. 2007, 67 (11), 2535–2544. https://doi.org/10.1016/j.compscitech.2006.12.012.Search in Google Scholar
41. Ohtani, Y.; Okumura, K.; Kawaguchi, A. Crystallization Behavior of Amorphous Poly(l-Lactide). J. Macromol. Sci., Part B. 2003, 42 (3–4), 875–888. https://doi.org/10.1081/MB-120021612.Search in Google Scholar
42. Androsch, R.; Di Lorenzo, M. L. Kinetics of Crystal Nucleation of poly(L-Lactic Acid). Polymer 2013, 54 (26), 6882–6885. https://doi.org/10.1016/j.polymer.2013.10.056.Search in Google Scholar
43. Deru, Q.; Robert, T. K. Crystallinity Determination of Polylactide by FT-Raman Spectrometry. Appl. Spectrosc. 1998, 52 (4), 488; https://doi.org/10.1366/0003702981943950.Search in Google Scholar
44. Yasuniwa, M.; Tsubakihara, S.; Iura, K.; Ono, Y.; Dan, Y.; Takahashi, K. Crystallization Behavior of Poly(l-Lactic Acid). Polymer 2006, 47 (21), 7554–7563. https://doi.org/10.1016/j.polymer.2006.08.054.Search in Google Scholar
45. He, Y.; Fan, Z.; Hu, Y.; Wu, T.; Wei, J.; Li, S. DSC Analysis of Isothermal Melt-Crystallization, Glass Transition and Melting Behavior of Poly(l-Lactide) with Different Melocular Weights. Eur. Polym. J. 2007, 43 (10), 4431–4439. https://doi.org/10.1016/j.eurpolymj.2007.07.007.Search in Google Scholar
46. Yu, C.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y.; Pan, P. Crystallization Behavior and Crystalline Structural Changes of Poly (Glycolic Acid) Investigated via Temperature-Variable WAXD and FTIR Analysis. CrystEngComm 2016, 18 (40), 7894–7902. https://doi.org/10.1039/C6CE01623E.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- The latest research status of porous sound-absorbing materials
- Thermal annealing and microwave irradiation in enhancing the mechanical performance of 3D printing CF/PA12 composite
- Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
- Effect of AO 4426 on damping properties of PVA/CPE-AO 2246
- Preparation and Assembly
- Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications
- Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
- Engineering and Processing
- A dynamic pressure strategy to minimize void formation in vacuum infusion
- Design and application of soft robot grippers using low-viscosity silicone by lost core injection molding manufacturing method
Articles in the same Issue
- Frontmatter
- Material Properties
- The latest research status of porous sound-absorbing materials
- Thermal annealing and microwave irradiation in enhancing the mechanical performance of 3D printing CF/PA12 composite
- Investigation into the crystallization of poly-lactic acid following the application of a novel high molecular weight, high epoxy functionality polymer chain extender
- Effect of AO 4426 on damping properties of PVA/CPE-AO 2246
- Preparation and Assembly
- Curcumin-encapsulated Pluronic micelles in chitosan/PEO nanofibers: a controlled release strategy for wound healing applications
- Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
- Engineering and Processing
- A dynamic pressure strategy to minimize void formation in vacuum infusion
- Design and application of soft robot grippers using low-viscosity silicone by lost core injection molding manufacturing method