Startseite Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Photocatalytic g-C3N4/poly(2-acrylamido-2-methylpropane sulfonic acid) composite hydrogel triggering the synergetic effect for long-lasting sustainable purifying organic wastewater

  • Shishan Xue EMAIL logo , Zhiyong Ye , Herong Zhang , Meiling Guo , Xi Yang , Dengliang He EMAIL logo , Shuxin Liu und Ning Chen
Veröffentlicht/Copyright: 23. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

With the development of modern industry, the water pollution is getting severer which causes the huge environmental problems. In this work, the novel photocatalytic polyelectrolyte composite hydrogels based on crosslinked poly(2-acrylamido-2-methylpropane sulfonic acid) equipped with graphite carbon nitride (g-C3N4) were exploited via a facile preparation route, which exhibited extremely high removal ratio of 95 % and 94.5 % to Rhodamine B and tetracycline, respectively, through the synergistic effect of adsorption and photodegradation. Remarkably, the recyclability was also observed on the as-prepared hydrogels, which enabled to reuse for 15 times with the few attenuations of removal efficiency to contaminants. This study provides the new insights into the photocatalyst composite hydrogel and possesses the profound significance of the treatment of organic pollutants.


Corresponding authors: Shishan Xue and Dengliang He, Chemistry and Chemical Engineering School, Mianyang Teachers’ College, Mianxing West Road No.166, Mianyang, 62100, China, E-mail: (S. Xue), (D. He)

Funding source: Innovation Team of Mianyang Teachers’ College

Award Identifier / Grant number: CXTD2023PY06

Funding source: Mianyang Teachers’ College Start-up Funding

Award Identifier / Grant number: 71/QD2021A11

Funding source: Open Fund of Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province

Award Identifier / Grant number: 2023FTSZ02

Funding source: Natural science Foundation project of Sichuan Province

Award Identifier / Grant number: 2022NSFSC0201

Award Identifier / Grant number: 2024NSFSC1035

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Competing interests: The authors state no conflict of interest.

  6. Research funding: This work was financial supported by Open Fund of Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province (2023FTSZ02), Mianyang Teachers’ College Start-up Funding (71/QD2021A11), Innovation Team of Mianyang Teachers’ College (CXTD2023PY06), Natural science Foundation project of Sichuan Province (2022NSFSC0201), and Natural science Foundation project of Sichuan Province (2024NSFSC1035).

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

1. Yao, B. D.; Zheng, G. W.; Luan, Y. N.; Wang, L. X.; Xing, X. M.; Wang, Y. Y.; Liu, Y.; He, J. X.; Zhang, F. Q. Cost-effective Bi2WO6 for Efficient Degradation of Rhodamine B and Tetracycline. J. Mater. Sci. Mater. Electron. 2023, 34, 246; https://doi.org/10.1007/s10854-022-09654-z.Suche in Google Scholar PubMed PubMed Central

2. Jiang, W. J.; Liu, Y. F.; Wang, J.; Zhang, M.; Luo, W. J.; Zhu, Y. F. Separation-Free Polyaniline/TiO2 3D Hydrogel with High Photocatalytic Activity. Adv. Mater. Interfac. 2016, 3, 1500502; https://doi.org/10.1002/admi.201500502.Suche in Google Scholar

3. Karunakaran, K.; Usman, M.; Sillanpää, M. A Review on Superadsorbents with Adsorption Capacity ≥1000 Mg G−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment. Sustainability 2022, 14, 16927; https://doi.org/10.3390/su142416927.Suche in Google Scholar

4. Sonal, S.; Mishra, B. K. A Comprehensive Review on the Synthesis and Performance of Different Zirconium-Based Adsorbents for the Removal of Various Water Contaminants. Chem. Eng. J. 2021, 424, 130509; https://doi.org/10.1016/j.cej.2021.130509.Suche in Google Scholar

5. Kim, S.; Nam, S. N.; Jang, A.; Jang, M.; Park, C. M.; Son, A.; Her, N.; Heo, J.; Yoon, Y. Review of Adsorption–Membrane Hybrid Systems for Water and Wastewater Treatment. Chemosphere 2022, 286, 131916; https://doi.org/10.1016/j.chemosphere.2021.131916.Suche in Google Scholar PubMed

6. Anastopoulos, I.; Pashalidis, I. Environmental Applications of Luffa Cylindrica-Based Adsorbents. J. Mol. Liq. 2020, 319, 114127; https://doi.org/10.1016/j.molliq.2020.114127.Suche in Google Scholar

7. Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510; https://doi.org/10.1021/acs.chemrev.8b00299.Suche in Google Scholar PubMed

8. Weerasundara, L.; Gabriele, B.; Figoli, A.; Ok, Y. S.; Bundschuh, J. Hydrogels: Novel Materials for Contaminant Removal in Water. A Review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1970; https://doi.org/10.1080/10643389.2020.1776055.Suche in Google Scholar

9. Yang, Y. C.; Zhu, Q. L.; Peng, X. W.; Sun, J. J.; Li, C.; Zhang, X. M.; Zhang, H.; Chen, J. B.; Zhou, X. F.; Zeng, H. B.; Zhang, Y. L. Hydrogels for the Removal of the Methylene Blue Dye from Wastewater: A Review. Environ. Chem. Lett. 2022, 20, 2665; https://doi.org/10.1007/s10311-022-01414-z.Suche in Google Scholar

10. Niu, Y.; Han, X.; Huang, L.; Song, J. Methylene Blue and Lead(II) Removal via Degradable Interpenetrating Network Hydrogels. J. Chem. Eng. Data 2020, 65, 1954; https://doi.org/10.1021/acs.jced.9b01134.Suche in Google Scholar

11. Qiu, J.; Fan, P.; Feng, Y.; Liu, F.; Ling, C.; Li, A. Comparison of the Adsorption Behaviors for Methylene Blue on Two Renewable Gels with Different Physical State. Environ. Pollut. 2019, 254, 113117; https://doi.org/10.1016/j.envpol.2019.113117.Suche in Google Scholar PubMed

12. Hao, D.; Huang, Q.; Wei, W.; Bai, X. J.; Ni, B. J. A Reusable, Separation-free and Biodegradable Calcium Alginate/g-C3n4 Microsphere for Sustainable Photocatalytic Wastewater Treatment. J. Clean. Prod. 2021, 314, 128033; https://doi.org/10.1016/j.jclepro.2021.128033.Suche in Google Scholar

13. Laura, R. P.; Lizeth, G. P.; Natali, L. M.; Fiderman, M. M.; Julian, U. Evaluation of TiO2 and SnO Supported on Graphene Oxide (TiO2-GO and SnO-GO) Photocatalysts for Treatment of Hospital Wastewater. Water 2020, 12, 1438; https://doi.org/10.3390/w12051438.Suche in Google Scholar

14. Nazir, A.; Tahir, M. S.; Kamal, G. M.; Zhang, X.; Tahir, M. B.; Jiang, B.; Safdar, M. Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation. Molecules 2023, 28, 3167; https://doi.org/10.3390/molecules28073167.Suche in Google Scholar PubMed PubMed Central

15. Li, C. Q.; Sun, Z. M.; Huang, W. X.; Zheng, S. L. Facile Synthesis of G-C3N4/Montmorillonite Composite with Enhanced Visible Light Photodegradation of Rhodamine B and Tetracycline. J. Taiwan Inst. Chem. Eng. 2016, 66, 363–371; https://doi.org/10.1016/j.jtice.2016.06.014.Suche in Google Scholar

16. Quan, W.; Bao, J. Y.; Meng, X. J.; Ning, Y. Q.; Cui, Y. N.; Hu, X. Y.; Yu, S. S.; Tian, H. W. 2D/2D Z-Scheme Photocatalyst of G-C3n4 and Plasmonic Bi Metal Deposited Bi2WO6: Enhanced Separation and Migration of Photoinduced Charges. J. Alloys Compd. 2023, 946, 169396; https://doi.org/10.1016/j.jallcom.2023.169396.Suche in Google Scholar

17. Bao, J. Y.; Quan, W.; Ning, Y. Q.; Wang, H. B.; Wei, Q.; Huang, L. Z.; Zhang, W. J.; Ma, Y. X.; Hu, X. Y.; Tian, H. W. Efficient Visible-Light-Driven Tetracycline Degradation and Cr(VI) Reduction over a LaNi1-xFexO3(0≤x≤1)/g-C3n4 Type-II Heterojunction Photocatalyst. Inorg. Chem. 2023, 62, 1086; https://doi.org/10.1021/acs.inorgchem.2c02982.Suche in Google Scholar PubMed

18. Myint, T. T.; Ge, J. G.; Niu, H. J. Y.; Chen, J.; Jiao, Z. A Separation-free and Pizza-Structure PAM/GCN/PAA Composite Hydrogel (PCH) in Wastewater Treatment at Visible Light or Solar Light. Sci. Total Environ. 2019, 705, 135821; https://doi.org/10.1016/j.scitotenv.2019.135821.Suche in Google Scholar PubMed

19. Bao, J. Y.; Jiang, X. T.; Huang, L. Z.; Quan, W.; Zhang, C. X.; Wang, Y. N.; Wang, H. B.; Zeng, Y.; Zhang, W. J.; Ma, Y. X.; Yu, S. S.; Hu, X. Y.; Tian, H. W. Molybdenum Disulfide Loading on a Z-Scheme Graphitic Carbon Nitride and Lanthanum Nickelate Heterojunction for Enhanced Photocatalysis: Interfacial Charge Transfer and Mechanistic Insights. J. Colloid Interface Sci. 2022, 611, 684; https://doi.org/10.1016/j.jcis.2021.12.106.Suche in Google Scholar PubMed

20. Meng, Z. S.; Zhou, B.; Xu, J.; Li, Y. X.; Hu, X. Y.; Tian, H. W. Heterostructured Nitrogen and Sulfur Co-doped Black TiO2/g-C3n4 Photocatalyst with Enhanced Photocatalytic Activity. Chem. Res. Chin. Univ. 2020, 36, 1045; https://doi.org/10.1007/s40242-020-0175-2.Suche in Google Scholar

21. Tian, H. W.; Liu, M.; Zheng, W. T. Constructing 2D Graphitic Carbon Nitride Nanosheets/Layered MoS2/Graphene Ternary Nanojunction with Enhanced Photocatalytic Activity. Appl. Catal. B Environ. 2018, 225, 468; https://doi.org/10.1016/j.apcatb.2017.12.019.Suche in Google Scholar

22. Chong, M. N., Jin, B., Chow, C. W., Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997, https://doi.org/10.1016/j.watres.2010.02.039.Suche in Google Scholar PubMed

23. Fu, G. B.; Xie, R.; Qin, J. W.; Deng, X. B.; Ju, X. J.; Wang, W.; Liu, Z.; Chu, L. Y. Facile Fabrication of Photocatalyst-Immobilized Gel Beads with Interconnected Macropores for the Efficient Removal of Pollutants in Water. Ind. Eng. Chem. Res. 2021, 60, 8762; https://doi.org/10.1021/acs.iecr.1c00971.Suche in Google Scholar

24. Zeng, J.; Peng, C.; Wang, X.; Wang, R.; Zhang, N.; Xiong, S. One-Pot Self-Assembled TiO2/Graphene/Poly(acrylamide) Superporous Hybrid for Photocatalytic Degradation of Organic Pollutants. J. Appl. Polym. Sci. 2018, 136, 47033; https://doi.org/10.1002/app.47033.Suche in Google Scholar

25. Yue, Y. Y.; Wang, X. H.; Wu, Q. L.; Han, J. Q.; Jiang, J. C. Highly Recyclable and Super-tough Hydrogel Mediated by Dual-Functional TiO2 Nanoparticles toward Efficient Photodegradation of Organic Water Pollutants. J. Colloid Interface Sci. 2020, 564, 99; https://doi.org/10.1016/j.jcis.2019.12.069.Suche in Google Scholar PubMed

26. Du, Y. J.; Che, H. A.; Wang, P. F.; Chen, J.; Ao, Y. H. Highly Efficient Removal of Organic Contaminant with Wide Concentration Range by a Novel Self-Cleaning Hydrogel: Mechanism, Degradation Pathway and DFT Calculation. J. Hazard. Mater. 2022, 440, 129738; https://doi.org/10.1016/j.jhazmat.2022.129738.Suche in Google Scholar PubMed

27. Kumru, B.; Antonietti, M.; Schmidt, B. V. K. J. Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One-Pot Grafting Approach. Langmuir 2017, 33, 9897–9906; https://doi.org/10.1021/acs.langmuir.7b02441.Suche in Google Scholar PubMed

28. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Adv. Funct. Mater. 2012, 22, 4763; https://doi.org/10.1002/adfm.201200922.Suche in Google Scholar

29. Jurjevec, S.; Zagar, E.; Kovacic, S. Functional Macroporous Amphoteric Polyelectrolyte Monoliths with Tunable Structures and Properties through Emulsion-Templated Synthesis. J. Colloid Interface Sci. 2020, 575, 480; https://doi.org/10.1016/j.jcis.2020.05.016.Suche in Google Scholar PubMed

30. Guo, M. L.; Wu, Y. P.; Xue, S. S.; Xia, Y. M.; Yang, X.; Dzenis, Y.; Li, Z. Y.; Lei, W. W.; Smith, A. T.; Sun, L. Y. A Highly Stretchable, Ultra-tough, Remarkably Tolerant, and Robust Self-Healing Glycerol-Hydrogel for a Dual-Responsive Soft Actuator. J. Mater. Chem. A 2019, 7, 25969; https://doi.org/10.1039/c9ta10183g.Suche in Google Scholar

31. Xue, S. S.; He, D. L.; Hu, X. C.; Cao, Y. Q.; Ge, J. L.; Liu, S. X. PVA-Borax/g-C3N4 Nanocomposite Hydrogel with Excellent Mechanical Property and Self-Healing Efficiency. J. Polym. Eng. 2023, 43, 594; https://doi.org/10.1515/polyeng-2023-0069.Suche in Google Scholar

32. Ding, H. Y.; Han, D. L.; Han, Y. J.; Liang, Y. Q.; Liu, X. M.; Li, Z. Y.; Zhu, S. L.; Wu, S. L. Visible Light Responsive CuS/Protonated g-C3N4 Heterostructure for Rapid Sterilization. J. Hazard. Mater. 2020, 393, 122423; https://doi.org/10.1016/j.jhazmat.2020.122423.Suche in Google Scholar PubMed

33. Lei, H.; Hao, Z. D.; Chen, K.; Chen, Y. H.; Zhang, J. N.; Hu, Z. J.; Rao, P. H.; Huang, Q. Insight into Adsorption Performance and Mechanism on Efficient Removal of Methylene Blue by Accordion-like V2CTx MXene. J. Phys. Chem. Lett. 2020, 11, 4253; https://doi.org/10.1021/acs.jpclett.0c00973.Suche in Google Scholar PubMed

34. Wang, T.; Xue, L.; Liu, Y. H.; Fang, T.; Zhang, L.; Xing, B. S. Insight into the Significant Contribution of Intrinsic Defects of Carbon-Based Materials for the Efficient Removal of Tetracycline Antibiotics. Chem. Eng. J. 2022, 435, 134822; https://doi.org/10.1016/j.cej.2022.134822.Suche in Google Scholar

35. Hou, M. F.; Ma, C. X.; Zhang, W. D.; Tang, X. Y.; Fan, Y. N.; Wan, H. F. Removal of Rhodamine B Using Iron-Pillared Bentonite. J. Hazard. Mater. 2011, 186, 1118; https://doi.org/10.1016/j.jhazmat.2010.11.110.Suche in Google Scholar PubMed

36. Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Suche in Google Scholar

37. Morris, J. C.; Weber, W. J. Removal of Biologically-Resistant Pollutants from Waste Waters by Adsorption. In Advances in Water Pollution Research; Pergamon: London, 1964; p p231.10.1016/B978-1-4832-8391-3.50032-4Suche in Google Scholar

38. Li, R. P.; Lin, C. Y.; Liu, X. T. Adsorption of Tungstate on Kaolinite: Adsorption Models and Kinetics. RSC Adv. 2016, 6, 19872; https://doi.org/10.1039/c5ra24201k.Suche in Google Scholar

39. Ahmari, S. D. A.; Waston, K.; Fong, B. N.; Ruyonga, R. M.; Ali, H. Adsorption Kinetics of 4-N-Nonylphenol on Hematite and Goethite. J. Environ. Chem. Eng. 2018, 6, 4030.10.1016/j.jece.2018.05.052Suche in Google Scholar

40. Wang, J. P.; Meng, X. B.; Zheng, Y.; Tian, Y. Q.; Bai, Y. X.; Jin, Z. Y. Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules 2017, 22, 1824; https://doi.org/10.3390/molecules22111824.Suche in Google Scholar PubMed PubMed Central

41. Üzüm, G.; Özmen, B. A.; Akgül, E. T.; Yavuz, E. Emulsion-Templated Porous Polymers for Efficient Dye Removal. ACS Omega 2022, 7, 16127; https://doi.org/10.1021/acsomega.2c01472.Suche in Google Scholar PubMed PubMed Central

42. Zheng, X.; Zheng, H.; Xiong, Z.; Zhao, R.; Liu, Y.; Zhao, C.; Zheng, C. Novel Anionic Polyacrylamide-Modify-Chitosan Magnetic Composite Nanoparticles with Excellent Adsorption Capacity for Cationic Dyes and pH-independent Adsorption Capability for Metal Ions. Chem. Eng. J. 2020, 392, 123706; https://doi.org/10.1016/j.cej.2019.123706.Suche in Google Scholar

43. Deng, J.; Li, X.; Wei, X.; Liu, Y.; Liang, J.; Song, B.; Shao, Y.; Huang, W. Hybrid Silicate-Hydrochar Composite for Highly Efficient Removal of Heavy Metal and Antibiotics: Coadsorption and Mechanism. Chem. Eng. J. 2020, 387, 124097; https://doi.org/10.1016/j.cej.2020.124097.Suche in Google Scholar

44. Xu, Y.; Bao, J.; Zhang, X.; Li, W.; Xie, Y.; Sun, S.; Zhao, W.; Zhao, C. Functionalized Polyethersulfone Nanofibrous Membranes with Ultra-high Adsorption Capacity for Organic Dyes by One-step Electrospinning. J. Colloid Interface Sci. 2019, 533, 526; https://doi.org/10.1016/j.jcis.2018.08.072.Suche in Google Scholar PubMed

45. Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y. One-Pot Synthesis of Magnetic Graphene Oxide Composites as an Efficient and Recoverable Adsorbent for Cd(II) and Pb(II) Removal from Aqueous Solution. J. Hazard. Mater. 2020, 381, 120914; https://doi.org/10.1016/j.jhazmat.2019.120914.Suche in Google Scholar PubMed

46. Kong, W. J.; Gao, Y.; Yue, Q. Y.; Li, Q.; Gao, B. Y.; Kong, Y.; Wang, X. D.; Zhang, P.; Wang, Y. Performance optimization of CdS precipitated graphene oxide/polyacrylic acid composite for efficient photodegradation of chlortetracycline. J. Hazard. Mater. 2020, 388, 121780; https://doi.org/10.1016/j.jhazmat.2019.121780.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0216).


Received: 2024-10-09
Accepted: 2025-01-01
Published Online: 2025-01-23
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0216/html
Button zum nach oben scrollen