Startseite Invertase adsorption with polymers functionalized by aspartic acid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Invertase adsorption with polymers functionalized by aspartic acid

  • Kadir Erol ORCID logo EMAIL logo und Şenol Yavuz
Veröffentlicht/Copyright: 13. Mai 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Today, the separation and purification processes are highly preferred over the affinity interactions in the scientific world. Among the materials used for this purpose, magnetic particles and cryogels are very popular. Both polymeric structures have their advantages and disadvantages. In this study, poly(2-Hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid), poly(HEMA-MAsp), magnetic microparticles, and cryogels were synthesized, and adsorption performances of both polymeric structures were investigated by using invertase from aqueous systems. Invertase (β-fructofuranoside fructohydrolase, EC 3.2.1.26) is a commercially important enzyme used in the food industry to obtain the product called invert sugar, which consists of a mixture of equivalent amounts of glucose and fructose. Therefore, it was preferred as a model enzyme in adsorption studies of polymeric structures. According to the results, 104.1 mg g−1 and 135.5 mg g−1 of adsorption capacity values were obtained for cryogel and magnetic microparticle forms, respectively. Increasing temperature slightly reduced the adsorption capacity of both polymeric structures. In the adsorption/desorption cycle studies performed five times with poly(HEMA-MAsp) polymers, both forms were found to have high reusable properties. It was determined that the activity of invertase immobilized on polymeric structures was preserved at a rate of 83.6% for the particle form and 89.2% for the cryogel form.


Corresponding author: Kadir Erol, Department of Medical Services and Techniques, Vocational School of Health Services, Hitit University, 19030 Çorum, Turkey, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by the Hitit University Scientific Research Projects Coordination Unit (grant no. ODMYO19001.18.001).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Erol, B., Erol, K., Gökmeşe, E. Process Biochem. 2019, 83, 104–113. https://doi.org/10.1016/j.procbio.2019.05.009.Suche in Google Scholar

2. Brassesco, M. E., Fuciños, P., Pastrana, L., Picó, G. Process Biochem. 2019, 80, 157–163. https://doi.org/10.1016/j.procbio.2019.02.016.Suche in Google Scholar

3. Farías, T., Hajizadeh, S., Ye, L. Separ. Purif. Technol. 2020, 235, 116203.10.1016/j.seppur.2019.116203Suche in Google Scholar

4. Erol, K., Bolat, M., Tatar, D., Nigiz, C., Köse, D. A. J. Mol. Struct. 2020, 1200, 127060. https://doi.org/10.1016/j.molstruc.2019.127060.Suche in Google Scholar

5. Kartal, F., Denizli, A. Colloids Surf. B Biointerfaces 2020, 190, 110860; https://doi.org/10.1016/j.colsurfb.2020.110860.Suche in Google Scholar PubMed

6. Singh, I., Lacko, C. S., Zhao, Z., Schmidt, C. E., Rinaldi, C. J. Colloid Interface Sci. 2020, 561, 647–658. https://doi.org/10.1016/j.jcis.2019.11.040.Suche in Google Scholar PubMed PubMed Central

7. Jáčová, J., Jořenek, M., Pospíšková, K., Najdekr, L., Zajoncová, L., Friedecký, D., Adam, T. J. Chromatogr. A 2019, 1605, 360355.10.1016/j.chroma.2019.07.009Suche in Google Scholar PubMed

8. Hajizadeh, S., Ye, L. Separ. Purif. Technol. 2019, 224, 95–105. https://doi.org/10.1016/j.seppur.2019.05.002.Suche in Google Scholar

9. Milakin, K. A., Capáková, Z., Acharya, U., Vajďák, J., Morávková, Z., Hodan, J., Humpolíček, P., Bober, P. Polymer 2020, 122491. https://doi.org/10.1016/j.polymer.2020.122491.Suche in Google Scholar

10. Bober, P., Capáková, Z., Acharya, U., Zasońska, B. A., Humpolíček, P., Hodan, J., Hromádková, J., Stejskal, J. Synth. Met. 2019, 252, 122–126. https://doi.org/10.1016/j.synthmet.2019.04.015.Suche in Google Scholar

11. Dencheva, N. V., Oliveira, F. D., Braz, J. F., Denchev, Z. Z. Eur. Polym. J. 2020, 122, 109375. https://doi.org/10.1016/j.eurpolymj.2019.109375.Suche in Google Scholar

12. Erol, K. J. Macromol. Sci., Part A 2016, 53, 629–635. https://doi.org/10.1080/10601325.2016.1212310.Suche in Google Scholar

13. Erol, K., Bolat Bülter, M., Köse, D. A., Kaplan, C. H. J. Poly. Eng. 2021, 41, 671–680. https://doi.org/10.1515/polyeng-2020-0285.Suche in Google Scholar

14. Erol, K., Yıldız, E., Alacabey, İ., Karabörk, M., Uzun, L. Environ. Sci. Pollut. Ser. 2019, 26, 33631–33641. https://doi.org/10.1007/s11356-019-06423-0.Suche in Google Scholar PubMed

15. Andjelković, U., Giacometti, J., Josić, D. Protein and peptide separations. In Liquid Chromatography; Fanali, S., Haddad, P. R., Poole, C. F., Riekkola, M. L., Eds., 2nd ed.; Elsevier: London, 2017; pp. 107–157.10.1016/B978-0-12-805392-8.00005-0Suche in Google Scholar

16. Islas-Valdez, S., López-Rayo, S., Hristov-Emilov, H., Hernández-Apaolaza, L., Lucena, J. J. Int. J. Biol. Macromol. 2020, 142, 163–171. https://doi.org/10.1016/j.ijbiomac.2019.09.088.Suche in Google Scholar PubMed

17. Gao, P., Li, J., Li, Z., Hao, J., Zan, L. J. Dairy Sci. 2016, 99, 9493–9501. https://doi.org/10.3168/jds.2015-10655.Suche in Google Scholar PubMed

18. Cai, K., Anderson, J., Orchard, J. D., Afdahl, C. D., Dickson, M., Li, Y. Biologicals 2019, 58, 28–34. https://doi.org/10.1016/j.biologicals.2019.01.004.Suche in Google Scholar PubMed

19. Briskot, T., Hahn, T., Huuk, T., Hubbuch, J. J. Chromatogr. A 2020, 1611, 460608. https://doi.org/10.1016/j.chroma.2019.460608.Suche in Google Scholar PubMed

20. Guo, W., Zhu, X., Cai, J., Huang, L., Cen, P., Xu, Z. Process Biochem. 2012, 47, 960–967. https://doi.org/10.1016/j.procbio.2012.03.003.Suche in Google Scholar

21. Wang, C., Geng, X. Process Biochem. 2012, 47, 2262–2266. https://doi.org/10.1016/j.procbio.2012.09.002.Suche in Google Scholar

22. Takei, T., Yoshihara, R., Danjo, S., Fukuhara, Y., Evans, C., Tomimatsu, R., Ohzuno, Y., Yoshida, M. Int. J. Biol. Macromol. 2020, 149, 140–147. https://doi.org/10.1016/j.ijbiomac.2020.01.227.Suche in Google Scholar PubMed

23. Suner, S. S., Ari, B., Onder, F. C., Ozpolat, B., Ay, M., Sahiner, N. Int. J. Biol. Macromol. 2019, 126, 1150–1157. https://doi.org/10.1016/j.ijbiomac.2019.01.021.Suche in Google Scholar PubMed

24. Mansoor, E., Van der Mynsbrugge, J., Head-Gordon, M., Bell, A. T. Catal. Today 2018, 312, 51–65. https://doi.org/10.1016/j.cattod.2018.02.007.Suche in Google Scholar

25. Sakata, S., Inoue, Y., Ishihara, K. Biomaterials 2016, 105, 102–108. https://doi.org/10.1016/j.biomaterials.2016.07.043.Suche in Google Scholar PubMed

26. Erol, K., Tatar, D., Veyisoğlu, A., Tokatlı, A. J. Polym. Eng. 2021, 41, 144–154. https://doi.org/10.1515/polyeng-2020-0191.Suche in Google Scholar

27. Inanan, T., Tüzmen, N., Karipcin, F. Int. J. Biol. Macromol. 2018, 114, 812–820. https://doi.org/10.1016/j.ijbiomac.2018.04.006.Suche in Google Scholar PubMed

28. Erol, K., Koncuk Cebeci, B., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121.Suche in Google Scholar PubMed

29. Erol, K., Gençer, N., Arslan, M., Arslan, O. Artif. Cell Nanomed. Biotechnol. 2013, 41, 125–130. https://doi.org/10.3109/10731199.2012.696065.Suche in Google Scholar PubMed

30. Guo, P. C., Wang, Q., Wang, Z., Dong, Z., He, H., Zhao, P. Int. J. Biol. Macromol. 2018, 107, 2334–2341. https://doi.org/10.1016/j.ijbiomac.2017.10.118.Suche in Google Scholar PubMed

31. Cetin, K., Perçin, I., Denizli, F., Denizli, A. Artif. Cell Nanomed. Biotechnol. 2017, 45, 1431–1439. https://doi.org/10.1080/21691401.2016.1243549.Suche in Google Scholar PubMed

32. Waifalkar, P. P., Parit, S. B., Chougale, A. D., Sahoo, S. C., Patil, P. S., Patil, P. B. J. Colloid Interface Sci. 2016, 482, 159–164. https://doi.org/10.1016/j.jcis.2016.07.082.Suche in Google Scholar PubMed

33. Köse, K., Erol, K., Emniyet, A. A., Köse, D. A., Avcı, G. A., Uzun, L. Appl. Biochem. Biotechnol. 2015, 177, 1025–1039.10.1007/s12010-015-1794-9Suche in Google Scholar PubMed

34. Bayramoglu, G., Doz, T., Ozalp, V. C., Arica, M. Y. Food Chem. 2017, 221, 1442–1450. https://doi.org/10.1016/j.foodchem.2016.11.007.Suche in Google Scholar PubMed

35. Andjelković, U., Milutinović-Nikolić, A., Jović-Jovičić, N., Banković, P., Bajt, T., Mojović, Z., Vujčić, Z., Jovanović, D. Food Chem. 2015, 168, 262–269.10.1016/j.foodchem.2014.07.055Suche in Google Scholar PubMed

36. Taskin, M., Ortucu, S., Unver, Y., Tasar, O. C., Ozdemir, M., Kaymak, H. C. Process Saf. Environ. Protect. 2016, 103, 136–143.10.1016/j.psep.2016.07.006Suche in Google Scholar

37. Pressi, G., Dal Toso, R., Dal Monte, R., Carturan, G. J. Sol. Gel Sci. Technol. 2003, 26, 1189–1193. https://doi.org/10.1023/a:1020704118146.10.1023/A:1020704118146Suche in Google Scholar

38. Esseland, K., Osei, Y. Nat. Prod. Chem. Res. 2014, 2, 2–6.Suche in Google Scholar

39. Andjelković, U., Pićurić, S., Vujčić, Z. Food Chem. 2010, 120, 799–804.10.1016/j.foodchem.2009.11.013Suche in Google Scholar

40. Andjelković, U., Theisgen, S., Scheidt, H. A., Petković, M., Huster, D., Vujčić, Z. Biochimie 2012, 94, 510–515.10.1016/j.biochi.2011.08.020Suche in Google Scholar PubMed

41. Andjelković, U., Gudelj, I., Klarić, T., Hinneburg, H., Vinković, M., Wittine, K., Dovezenski, N., Vikić-Topić, D., Lauc, G., Vujčić, Z., Josić, D. Electrophoresis 2021, 42, 2626–2636.10.1002/elps.202000092Suche in Google Scholar PubMed

42. Köse, K. J. Turk. Chem. Soc. Sect. A: Chem. 2016, 3, 185–204.10.18596/jotcsa.74979Suche in Google Scholar

43. Erol, K., Köse, K., Güngüneş, H., Köse, D. A. J. Mol. Struct. 2017, 1130, 753–759. https://doi.org/10.1016/j.molstruc.2016.11.004.Suche in Google Scholar

44. Arica, M. Y., Alaeddinoğlu, N. G., Hasirci, V. Enzym. Microb. Technol. 1998, 22, 152–157. https://doi.org/10.1016/s0141-0229(97)00139-7.Suche in Google Scholar

45. Yavuz, H., Akgöl, S., Arica, Y., Denizli, A. Macromol. Biosci. 2004, 4, 674–679. https://doi.org/10.1002/mabi.200400028.Suche in Google Scholar PubMed

46. Erol, K. Artif. Cell Nanomed. Biotechnol. 2017, 45, 31–38. https://doi.org/10.1080/21691401.2016.1215326.Suche in Google Scholar PubMed

47. Vazquez, R., Perfusion, L. D. F. Perfusion 2013, 28, 557–559. https://doi.org/10.1177/0267659113498921.Suche in Google Scholar PubMed

48. Labus, K., Wolanin, K., Radosinski, L. Catalysts 2020, 10, 489–511. https://doi.org/10.3390/catal10050489.Suche in Google Scholar

49. Anah, L., Astrini, N. IOP Conf. Series: Earth Environ. Sci. 2018, 160, 012017. https://doi.org/10.1088/1755-1315/160/1/012017.Suche in Google Scholar

50. Amin, M. T., Alazba, A. A., Shafiq, M. Water Sci. Technol. 2017, 76, 1805–1815. https://doi.org/10.2166/wst.2017.366.Suche in Google Scholar PubMed

51. Akkaya, B., Uzun, L., Altintaş, E. B., Candan, F., Denizli, A. J. Macromol. Sci., Part A 2009, 46, 232–239. https://doi.org/10.1080/10601320802637086.Suche in Google Scholar

52. Uygun, M., Aktaş Uygun, D., Özçalışkan, E., Akgöl, S., Denizli, A. J. Chromatogr. B 2012, 887–888, 73–78. https://doi.org/10.1016/j.jchromb.2012.01.014.Suche in Google Scholar PubMed

Received: 2021-12-26
Accepted: 2022-03-15
Published Online: 2022-05-13
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0373/pdf?lang=de
Button zum nach oben scrollen