Abstract
Today, the separation and purification processes are highly preferred over the affinity interactions in the scientific world. Among the materials used for this purpose, magnetic particles and cryogels are very popular. Both polymeric structures have their advantages and disadvantages. In this study, poly(2-Hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid), poly(HEMA-MAsp), magnetic microparticles, and cryogels were synthesized, and adsorption performances of both polymeric structures were investigated by using invertase from aqueous systems. Invertase (β-fructofuranoside fructohydrolase, EC 3.2.1.26) is a commercially important enzyme used in the food industry to obtain the product called invert sugar, which consists of a mixture of equivalent amounts of glucose and fructose. Therefore, it was preferred as a model enzyme in adsorption studies of polymeric structures. According to the results, 104.1 mg g−1 and 135.5 mg g−1 of adsorption capacity values were obtained for cryogel and magnetic microparticle forms, respectively. Increasing temperature slightly reduced the adsorption capacity of both polymeric structures. In the adsorption/desorption cycle studies performed five times with poly(HEMA-MAsp) polymers, both forms were found to have high reusable properties. It was determined that the activity of invertase immobilized on polymeric structures was preserved at a rate of 83.6% for the particle form and 89.2% for the cryogel form.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study was supported by the Hitit University Scientific Research Projects Coordination Unit (grant no. ODMYO19001.18.001).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Erol, B., Erol, K., Gökmeşe, E. Process Biochem. 2019, 83, 104–113. https://doi.org/10.1016/j.procbio.2019.05.009.Suche in Google Scholar
2. Brassesco, M. E., Fuciños, P., Pastrana, L., Picó, G. Process Biochem. 2019, 80, 157–163. https://doi.org/10.1016/j.procbio.2019.02.016.Suche in Google Scholar
3. Farías, T., Hajizadeh, S., Ye, L. Separ. Purif. Technol. 2020, 235, 116203.10.1016/j.seppur.2019.116203Suche in Google Scholar
4. Erol, K., Bolat, M., Tatar, D., Nigiz, C., Köse, D. A. J. Mol. Struct. 2020, 1200, 127060. https://doi.org/10.1016/j.molstruc.2019.127060.Suche in Google Scholar
5. Kartal, F., Denizli, A. Colloids Surf. B Biointerfaces 2020, 190, 110860; https://doi.org/10.1016/j.colsurfb.2020.110860.Suche in Google Scholar PubMed
6. Singh, I., Lacko, C. S., Zhao, Z., Schmidt, C. E., Rinaldi, C. J. Colloid Interface Sci. 2020, 561, 647–658. https://doi.org/10.1016/j.jcis.2019.11.040.Suche in Google Scholar PubMed PubMed Central
7. Jáčová, J., Jořenek, M., Pospíšková, K., Najdekr, L., Zajoncová, L., Friedecký, D., Adam, T. J. Chromatogr. A 2019, 1605, 360355.10.1016/j.chroma.2019.07.009Suche in Google Scholar PubMed
8. Hajizadeh, S., Ye, L. Separ. Purif. Technol. 2019, 224, 95–105. https://doi.org/10.1016/j.seppur.2019.05.002.Suche in Google Scholar
9. Milakin, K. A., Capáková, Z., Acharya, U., Vajďák, J., Morávková, Z., Hodan, J., Humpolíček, P., Bober, P. Polymer 2020, 122491. https://doi.org/10.1016/j.polymer.2020.122491.Suche in Google Scholar
10. Bober, P., Capáková, Z., Acharya, U., Zasońska, B. A., Humpolíček, P., Hodan, J., Hromádková, J., Stejskal, J. Synth. Met. 2019, 252, 122–126. https://doi.org/10.1016/j.synthmet.2019.04.015.Suche in Google Scholar
11. Dencheva, N. V., Oliveira, F. D., Braz, J. F., Denchev, Z. Z. Eur. Polym. J. 2020, 122, 109375. https://doi.org/10.1016/j.eurpolymj.2019.109375.Suche in Google Scholar
12. Erol, K. J. Macromol. Sci., Part A 2016, 53, 629–635. https://doi.org/10.1080/10601325.2016.1212310.Suche in Google Scholar
13. Erol, K., Bolat Bülter, M., Köse, D. A., Kaplan, C. H. J. Poly. Eng. 2021, 41, 671–680. https://doi.org/10.1515/polyeng-2020-0285.Suche in Google Scholar
14. Erol, K., Yıldız, E., Alacabey, İ., Karabörk, M., Uzun, L. Environ. Sci. Pollut. Ser. 2019, 26, 33631–33641. https://doi.org/10.1007/s11356-019-06423-0.Suche in Google Scholar PubMed
15. Andjelković, U., Giacometti, J., Josić, D. Protein and peptide separations. In Liquid Chromatography; Fanali, S., Haddad, P. R., Poole, C. F., Riekkola, M. L., Eds., 2nd ed.; Elsevier: London, 2017; pp. 107–157.10.1016/B978-0-12-805392-8.00005-0Suche in Google Scholar
16. Islas-Valdez, S., López-Rayo, S., Hristov-Emilov, H., Hernández-Apaolaza, L., Lucena, J. J. Int. J. Biol. Macromol. 2020, 142, 163–171. https://doi.org/10.1016/j.ijbiomac.2019.09.088.Suche in Google Scholar PubMed
17. Gao, P., Li, J., Li, Z., Hao, J., Zan, L. J. Dairy Sci. 2016, 99, 9493–9501. https://doi.org/10.3168/jds.2015-10655.Suche in Google Scholar PubMed
18. Cai, K., Anderson, J., Orchard, J. D., Afdahl, C. D., Dickson, M., Li, Y. Biologicals 2019, 58, 28–34. https://doi.org/10.1016/j.biologicals.2019.01.004.Suche in Google Scholar PubMed
19. Briskot, T., Hahn, T., Huuk, T., Hubbuch, J. J. Chromatogr. A 2020, 1611, 460608. https://doi.org/10.1016/j.chroma.2019.460608.Suche in Google Scholar PubMed
20. Guo, W., Zhu, X., Cai, J., Huang, L., Cen, P., Xu, Z. Process Biochem. 2012, 47, 960–967. https://doi.org/10.1016/j.procbio.2012.03.003.Suche in Google Scholar
21. Wang, C., Geng, X. Process Biochem. 2012, 47, 2262–2266. https://doi.org/10.1016/j.procbio.2012.09.002.Suche in Google Scholar
22. Takei, T., Yoshihara, R., Danjo, S., Fukuhara, Y., Evans, C., Tomimatsu, R., Ohzuno, Y., Yoshida, M. Int. J. Biol. Macromol. 2020, 149, 140–147. https://doi.org/10.1016/j.ijbiomac.2020.01.227.Suche in Google Scholar PubMed
23. Suner, S. S., Ari, B., Onder, F. C., Ozpolat, B., Ay, M., Sahiner, N. Int. J. Biol. Macromol. 2019, 126, 1150–1157. https://doi.org/10.1016/j.ijbiomac.2019.01.021.Suche in Google Scholar PubMed
24. Mansoor, E., Van der Mynsbrugge, J., Head-Gordon, M., Bell, A. T. Catal. Today 2018, 312, 51–65. https://doi.org/10.1016/j.cattod.2018.02.007.Suche in Google Scholar
25. Sakata, S., Inoue, Y., Ishihara, K. Biomaterials 2016, 105, 102–108. https://doi.org/10.1016/j.biomaterials.2016.07.043.Suche in Google Scholar PubMed
26. Erol, K., Tatar, D., Veyisoğlu, A., Tokatlı, A. J. Polym. Eng. 2021, 41, 144–154. https://doi.org/10.1515/polyeng-2020-0191.Suche in Google Scholar
27. Inanan, T., Tüzmen, N., Karipcin, F. Int. J. Biol. Macromol. 2018, 114, 812–820. https://doi.org/10.1016/j.ijbiomac.2018.04.006.Suche in Google Scholar PubMed
28. Erol, K., Koncuk Cebeci, B., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121.Suche in Google Scholar PubMed
29. Erol, K., Gençer, N., Arslan, M., Arslan, O. Artif. Cell Nanomed. Biotechnol. 2013, 41, 125–130. https://doi.org/10.3109/10731199.2012.696065.Suche in Google Scholar PubMed
30. Guo, P. C., Wang, Q., Wang, Z., Dong, Z., He, H., Zhao, P. Int. J. Biol. Macromol. 2018, 107, 2334–2341. https://doi.org/10.1016/j.ijbiomac.2017.10.118.Suche in Google Scholar PubMed
31. Cetin, K., Perçin, I., Denizli, F., Denizli, A. Artif. Cell Nanomed. Biotechnol. 2017, 45, 1431–1439. https://doi.org/10.1080/21691401.2016.1243549.Suche in Google Scholar PubMed
32. Waifalkar, P. P., Parit, S. B., Chougale, A. D., Sahoo, S. C., Patil, P. S., Patil, P. B. J. Colloid Interface Sci. 2016, 482, 159–164. https://doi.org/10.1016/j.jcis.2016.07.082.Suche in Google Scholar PubMed
33. Köse, K., Erol, K., Emniyet, A. A., Köse, D. A., Avcı, G. A., Uzun, L. Appl. Biochem. Biotechnol. 2015, 177, 1025–1039.10.1007/s12010-015-1794-9Suche in Google Scholar PubMed
34. Bayramoglu, G., Doz, T., Ozalp, V. C., Arica, M. Y. Food Chem. 2017, 221, 1442–1450. https://doi.org/10.1016/j.foodchem.2016.11.007.Suche in Google Scholar PubMed
35. Andjelković, U., Milutinović-Nikolić, A., Jović-Jovičić, N., Banković, P., Bajt, T., Mojović, Z., Vujčić, Z., Jovanović, D. Food Chem. 2015, 168, 262–269.10.1016/j.foodchem.2014.07.055Suche in Google Scholar PubMed
36. Taskin, M., Ortucu, S., Unver, Y., Tasar, O. C., Ozdemir, M., Kaymak, H. C. Process Saf. Environ. Protect. 2016, 103, 136–143.10.1016/j.psep.2016.07.006Suche in Google Scholar
37. Pressi, G., Dal Toso, R., Dal Monte, R., Carturan, G. J. Sol. Gel Sci. Technol. 2003, 26, 1189–1193. https://doi.org/10.1023/a:1020704118146.10.1023/A:1020704118146Suche in Google Scholar
38. Esseland, K., Osei, Y. Nat. Prod. Chem. Res. 2014, 2, 2–6.Suche in Google Scholar
39. Andjelković, U., Pićurić, S., Vujčić, Z. Food Chem. 2010, 120, 799–804.10.1016/j.foodchem.2009.11.013Suche in Google Scholar
40. Andjelković, U., Theisgen, S., Scheidt, H. A., Petković, M., Huster, D., Vujčić, Z. Biochimie 2012, 94, 510–515.10.1016/j.biochi.2011.08.020Suche in Google Scholar PubMed
41. Andjelković, U., Gudelj, I., Klarić, T., Hinneburg, H., Vinković, M., Wittine, K., Dovezenski, N., Vikić-Topić, D., Lauc, G., Vujčić, Z., Josić, D. Electrophoresis 2021, 42, 2626–2636.10.1002/elps.202000092Suche in Google Scholar PubMed
42. Köse, K. J. Turk. Chem. Soc. Sect. A: Chem. 2016, 3, 185–204.10.18596/jotcsa.74979Suche in Google Scholar
43. Erol, K., Köse, K., Güngüneş, H., Köse, D. A. J. Mol. Struct. 2017, 1130, 753–759. https://doi.org/10.1016/j.molstruc.2016.11.004.Suche in Google Scholar
44. Arica, M. Y., Alaeddinoğlu, N. G., Hasirci, V. Enzym. Microb. Technol. 1998, 22, 152–157. https://doi.org/10.1016/s0141-0229(97)00139-7.Suche in Google Scholar
45. Yavuz, H., Akgöl, S., Arica, Y., Denizli, A. Macromol. Biosci. 2004, 4, 674–679. https://doi.org/10.1002/mabi.200400028.Suche in Google Scholar PubMed
46. Erol, K. Artif. Cell Nanomed. Biotechnol. 2017, 45, 31–38. https://doi.org/10.1080/21691401.2016.1215326.Suche in Google Scholar PubMed
47. Vazquez, R., Perfusion, L. D. F. Perfusion 2013, 28, 557–559. https://doi.org/10.1177/0267659113498921.Suche in Google Scholar PubMed
48. Labus, K., Wolanin, K., Radosinski, L. Catalysts 2020, 10, 489–511. https://doi.org/10.3390/catal10050489.Suche in Google Scholar
49. Anah, L., Astrini, N. IOP Conf. Series: Earth Environ. Sci. 2018, 160, 012017. https://doi.org/10.1088/1755-1315/160/1/012017.Suche in Google Scholar
50. Amin, M. T., Alazba, A. A., Shafiq, M. Water Sci. Technol. 2017, 76, 1805–1815. https://doi.org/10.2166/wst.2017.366.Suche in Google Scholar PubMed
51. Akkaya, B., Uzun, L., Altintaş, E. B., Candan, F., Denizli, A. J. Macromol. Sci., Part A 2009, 46, 232–239. https://doi.org/10.1080/10601320802637086.Suche in Google Scholar
52. Uygun, M., Aktaş Uygun, D., Özçalışkan, E., Akgöl, S., Denizli, A. J. Chromatogr. B 2012, 887–888, 73–78. https://doi.org/10.1016/j.jchromb.2012.01.014.Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Advancement in hemp fibre polymer composites: a comprehensive review
- Effects and mechanism of filler content on thermal conductivity of composites: a case study on plasticized polyvinyl chloride/graphite composites
- Effects of Eucommia ulmoides gum content and processing conditions on damping properties of E. ulmoides gum/nitrile-butadiene rubber nanocomposites
- Preparation and Assembly
- Preparation of flame retardant glass fiber via emulsion impregnation and application in polyamide 6
- Invertase adsorption with polymers functionalized by aspartic acid
- Engineering and Processing
- External field alignment of nickel-coated carbon fiber/PDMS composite for biological monitoring with high sensitivity
- Development of a cavity pressure control for injection moulding by adjusting the cross-section in the hot runner
- Process optimization for extraction of avian eggshell membrane derived collagen for tissue engineering applications
- Joint formation mechanism of different laser transmission welding paths
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Advancement in hemp fibre polymer composites: a comprehensive review
- Effects and mechanism of filler content on thermal conductivity of composites: a case study on plasticized polyvinyl chloride/graphite composites
- Effects of Eucommia ulmoides gum content and processing conditions on damping properties of E. ulmoides gum/nitrile-butadiene rubber nanocomposites
- Preparation and Assembly
- Preparation of flame retardant glass fiber via emulsion impregnation and application in polyamide 6
- Invertase adsorption with polymers functionalized by aspartic acid
- Engineering and Processing
- External field alignment of nickel-coated carbon fiber/PDMS composite for biological monitoring with high sensitivity
- Development of a cavity pressure control for injection moulding by adjusting the cross-section in the hot runner
- Process optimization for extraction of avian eggshell membrane derived collagen for tissue engineering applications
- Joint formation mechanism of different laser transmission welding paths