Home Development of a cavity pressure control for injection moulding by adjusting the cross-section in the hot runner
Article
Licensed
Unlicensed Requires Authentication

Development of a cavity pressure control for injection moulding by adjusting the cross-section in the hot runner

  • Christian Hopmann , Matthias Schöll EMAIL logo and Hanna Dornebusch
Published/Copyright: May 13, 2022
Become an author with De Gruyter Brill

Abstract

Fluctuations in the injection moulding process are affecting component quality. A pressure control can be used to increase process consistency. However, current control systems cannot influence the melt flow in the mould specifically for individual cavities. Therefore, a control concept is being developed in which commercially available, servo-electrically driven hot runner valve pins are used to control the cavity pressure in the holding pressure phase. By varying the stroke, the pressure resistance in the hot runner and thus the pressure transfer into the cavity are influenced. A one cavity mould with two pressure sensors and a servo-electrical driven hot runner was used to evaluate the control setup, implementing a PID controller. The evaluation criterion for the setup is to what extent the reference curve measured in advance can be reproduced after provoked disturbance. The control calculates the difference between the actual pressure and the reference curve. The control compensates the pressure difference by a pin movement. The control concept can compensate for disturbances that do not change the material behaviour, such as changes in holding pressure. Changes in the material behaviour, for example due to fluctuations in the mould temperature, cannot be compensated due to the reference control.


Corresponding author: Matthias Schöll, Institute for Plastics Processing in Industry and Craft at RWTH Aachen University, Seffenter Weg 201, 52074 Aachen, Germany, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The research project 19966N of the Forschungsvereinigung Kunststoffverarbeitung was sponsored as part of “industrielle Gemeinschaftsforschung und -entwicklung (IGF)” by the German Bundesministerium für Wirtschaft und Energie (BMWi) due to an enactment of the German Bundestag through the AiF. We would like to extend our thanks to all organizations mentioned.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. König, E. Innovative möglichkeit zur qualitätssicherung von spritzgussbauteilen auf basis von werkzeuginnendruck und werkzeugwandtemperatur. In Fachtagung Spritzgießen und Veredeln, Duisburg, Germany, 2014.Search in Google Scholar

2. Schiffers, R. Robuste spritzgießprozesse mit adaptiver prozessführung als basis für eine effiziente produktion hochwertiger formteile. In Fachtagung Spritzgießen und Veredeln, Duisburg, Germany, 2014.Search in Google Scholar

3. Behrens, H.-H. Null-fehler-produktion statt kontrolle. Kunststoffxtra 2015, 105, 19–22.Search in Google Scholar

4. Brinkmann, T. Produktentwicklung Mit Kunststoffen; Carl Hanser Verlag: Munich, Vienna, 2008.Search in Google Scholar

5. Kruppa, S. Improved process and component quality when using recycled materials. Kunstst. Int. 2017, 107, 26–27.Search in Google Scholar

6. Schiffers, R. Adaptive process control – what is it for? Kunstst. Int. 2017, 107, 29–30.Search in Google Scholar

7. Heinzler, F. A., Wortberg, J. Qualitätsregelung beim spritzgießen (teil1): rheologische untersuchung prozessrelevanter alterungseinflüsse. Z. Kunststofftechnik 2015, 11, 103–130, https://doi.org/10.3139/o999.03022015.Search in Google Scholar

8. Bader, C. Quality rarely comes alone. Kunstst. Int. 2015, 105, 27–32.Search in Google Scholar

9. Schiffers, R. How are viscosity changes detected and corrected? Kunstst. Int. 2017, 107, 45–46.Search in Google Scholar

10. Hornberg, K., Hopmann, C., Vukovic, M., Stemmler, S. A. D. Effects of cyclical process influences on the cavity pressure curve and part quality in the injection moulding process. J. Plast. Technol. 2021, 17, 173–203.Search in Google Scholar

11. Johannhaber, F., Michaeli, W. Handbuch Spritzgießen; Carl Hanser Verlag: Munich, 2004.10.3139/9783446440982Search in Google Scholar

12. Heinzler, F. Modellgestützte Qualitätsregelung Durch Eine Adaptive, Druckgeregelte Prozessführung beim Spritzgießen. Ph.D. Thesis, Universität Duisburg-Essen, Germany, 2014.10.3139/O999.02032015Search in Google Scholar

13. Schiffers, R. Verbesserung der Prozessfähigkeit beim Spritzgießen Durch Nutzung von Prozessdaten und Eine Neuartige Schneckenhubführung. Ph.D. Thesis, Universität Duisburg-Essen, Germany, 2009.Search in Google Scholar

14. Eben, J. Identifizierung und Reduzierung Realer Schwankungen Durch Paxistaugliche Prozessführungsmethoden beim Spritzgießen. Ph.D. Thesis, Technische Universität Chemnitz, Germany, 2014.Search in Google Scholar

15. Kurt, M., Kamber, S. O., Kaynak, Y., Atakok, G., Girit, O. Experimental investigation of plastic injection molding: assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater. Des. 2009, 30, 3217–3224, https://doi.org/10.1016/j.matdes.2009.01.004.Search in Google Scholar

16. Schreiber, A. Regelung des Spritzgießprozesses auf Basis von Prozessgrößen und im Werkzeug ermittelter Materialdaten. Ph.D. Thesis, RWTH Aachen, Germany, 2011.Search in Google Scholar

17. Kruppa, S. Adaptive Prozessführung und Alternative Einspritzkonzepte beim Spritzgießen von Thermoplasten. Ph.D. Thesis, Universität Duisburg-Essen, Germany, 2015.Search in Google Scholar

18. Pillwein, G., Giessauf, J., Steinbichler, G. Einfaches Umschalten auf konstante Qualität. Kunststoffe 2012, 102, 31–35.Search in Google Scholar

19. Bader, C., König, E., Schmidt, C. Qualität aus der Tiefe des Werkzeugs. Kunststoffe 2013, 103, 46–50.Search in Google Scholar

20. Bader, C. Verfahren zum Überwachen und/oder Regeln der Schmelzebefüllung von zumindest einer Kavität. Patent specification. DE102005032367A1, Germany, 2005.Search in Google Scholar

21. Behr, H., Graf, H., List, H., Mayer, F. Regeleinrichtung fuer Spritzgussmaschinen. Patent specification DE2358911A1, 1972.Search in Google Scholar

22. Bader, C., König, E. Wir regeln das schon. Kunststoffe 2012, 102, 62–67.Search in Google Scholar

23. Schäfer, O. Geregelte teilequalität. In Today, Das ARBURG Magazin, Vol. 35, 2007; p. 19.Search in Google Scholar

24. Schnerr-Häselbarth, O. Der heiße draht ins werkzeug. Kunststoffe 2002, 92, 56–60.Search in Google Scholar

25. Bader, C. Und sie bewegt sich doch. Kunststoffe 2008, 98, 60–66.Search in Google Scholar

26. Bader, C., Kristiansen, P. M. Auf den Punkt gebracht. Kunststoffe 2011, 101, 16–20.Search in Google Scholar

27. Michaeli, W., Gruber, J. Prozessführung beim Spritzgießen – direkte Regelung des Werkzeuginnendrucks steigert die Reproduzierbarkeit. Z. Kunststofftechnik 2005, 1, 1–12.Search in Google Scholar

28. Michaeli, W., Schreiber, S. Der Innendruck im Fokus der Regelung – Prozessführung beim Spritzgießen auf Basis von Prozessgrößen. Plastverarbeiter 2008, 35, 30–33.Search in Google Scholar

29. Michaeli, W., Schreiber, A., Lettowsky, C. Optimierung der Prozessführung beim Thermoplastspritzgießen durch online-Regelung auf Basis von Prozessgrößen. Z. Kunststofftechnik 2008, 4, 1–17.Search in Google Scholar

30. Michaeli, W., Schreiber, A. Online control of the injection molding process based on process variables. Adv. Polym. Technol. 2009, 28, 65–76 https://doi.org/10.1002/adv.20153.Search in Google Scholar

31. Theunissen, M., Hopmann, C., Heinisch, J. Compensating viscosity fluctuations in injection moulding. In Polym. Proc. Soc., PPS-32 Conf. Proc Lyon, France, 2016.10.1063/1.5016748Search in Google Scholar

32. Gruber, J. M. Prozessführung beim Thermoplastspritzgießen auf Basis des Werkzeuginnendrucks. Ph.D. Thesis, RWTH Aachen, Germany, 2005.Search in Google Scholar

33. Hopmann, C., Reßmann, A., Heinisch, J. Influence on product quality by pvT-optimised processing in injection compression molding. Int. Polym. Process. 2016, 31, 156–165, https://doi.org/10.3139/217.3058.Search in Google Scholar

34. Hopmann, C., Abel, D., Heinisch, J., Stemmler, S. Self-Optimizing Injection Molding Based on Iterative Learning Cavity Pressure Control; Springer Verlag: Heidelberg, 2017.10.1007/s11740-017-0719-6Search in Google Scholar

35. Schreyer, H -J. Verfahren überschreitet bisherige Grenzen beim Spritzgießen. Kunststoffe, 2005, 95, 48–49.Search in Google Scholar

36. Doughty, M., Frisin, W., Hume, W., Kazmer, D., Moss, M. Controlled Injection using Manifold having Multiple Feed Channels. Patent specification. US2003/0203064A1, USA, 2003.Search in Google Scholar

37. Kazmer, D. O., Barkan, P. Multi-cavity pressure control in the filling and packing stages of the injection molding process. Polym. Eng. Sci. 1997, 37, 1865–1879, https://doi.org/10.1002/pen.11837.Search in Google Scholar

38. Kazmer, D. O. Dynamic Feed Control: A New Method for Injection Molding of High Quality Plastic Parts. Ph.D. Thesis Dissertation, Stanford University, California, USA, 1995.Search in Google Scholar

39. Kazmer, D. O., Gupta, D. A low force valve for dynamic control of molten plastics in a mold. Int. Polym. Process. 2006, 21, 175–182, https://doi.org/10.3139/217.0094.Search in Google Scholar

40. Kazmer, D. O., Barkan, P. The process capability of multi-cavity pressure control for the injection molding process. Polym. Eng. Sci. 1997, 37, 1880–1895, https://doi.org/10.1002/pen.11838.Search in Google Scholar

41. N.N. Die Größten ihrer art. Kunststoffe 2018, 108, 85.Search in Google Scholar

42. Hopmann, C., Dornebusch, H. Werkzeuginnendruck in der nachdruckphase regeln. Plastverarbeiter 2019, 70, 108–110.Search in Google Scholar

43. Hopmann, C., Dornebusch, H., Schöll, M. Die heißkanalnadel als stellgröße. Kunststoffe 2021, 111, 34–37.Search in Google Scholar

44. Ziegler, J. G., Nichols, N. B. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control Trans. ASME 1942, 64, 759–765.10.1115/1.2899060Search in Google Scholar

Received: 2021-08-24
Revised: 2022-01-31
Accepted: 2022-03-06
Published Online: 2022-05-13
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0225/html
Scroll to top button