Home Invertase adsorption with polymers functionalized by aspartic acid
Article
Licensed
Unlicensed Requires Authentication

Invertase adsorption with polymers functionalized by aspartic acid

  • Kadir Erol ORCID logo EMAIL logo and Şenol Yavuz
Published/Copyright: May 13, 2022
Become an author with De Gruyter Brill

Abstract

Today, the separation and purification processes are highly preferred over the affinity interactions in the scientific world. Among the materials used for this purpose, magnetic particles and cryogels are very popular. Both polymeric structures have their advantages and disadvantages. In this study, poly(2-Hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid), poly(HEMA-MAsp), magnetic microparticles, and cryogels were synthesized, and adsorption performances of both polymeric structures were investigated by using invertase from aqueous systems. Invertase (β-fructofuranoside fructohydrolase, EC 3.2.1.26) is a commercially important enzyme used in the food industry to obtain the product called invert sugar, which consists of a mixture of equivalent amounts of glucose and fructose. Therefore, it was preferred as a model enzyme in adsorption studies of polymeric structures. According to the results, 104.1 mg g−1 and 135.5 mg g−1 of adsorption capacity values were obtained for cryogel and magnetic microparticle forms, respectively. Increasing temperature slightly reduced the adsorption capacity of both polymeric structures. In the adsorption/desorption cycle studies performed five times with poly(HEMA-MAsp) polymers, both forms were found to have high reusable properties. It was determined that the activity of invertase immobilized on polymeric structures was preserved at a rate of 83.6% for the particle form and 89.2% for the cryogel form.


Corresponding author: Kadir Erol, Department of Medical Services and Techniques, Vocational School of Health Services, Hitit University, 19030 Çorum, Turkey, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by the Hitit University Scientific Research Projects Coordination Unit (grant no. ODMYO19001.18.001).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Erol, B., Erol, K., Gökmeşe, E. Process Biochem. 2019, 83, 104–113. https://doi.org/10.1016/j.procbio.2019.05.009.Search in Google Scholar

2. Brassesco, M. E., Fuciños, P., Pastrana, L., Picó, G. Process Biochem. 2019, 80, 157–163. https://doi.org/10.1016/j.procbio.2019.02.016.Search in Google Scholar

3. Farías, T., Hajizadeh, S., Ye, L. Separ. Purif. Technol. 2020, 235, 116203.10.1016/j.seppur.2019.116203Search in Google Scholar

4. Erol, K., Bolat, M., Tatar, D., Nigiz, C., Köse, D. A. J. Mol. Struct. 2020, 1200, 127060. https://doi.org/10.1016/j.molstruc.2019.127060.Search in Google Scholar

5. Kartal, F., Denizli, A. Colloids Surf. B Biointerfaces 2020, 190, 110860; https://doi.org/10.1016/j.colsurfb.2020.110860.Search in Google Scholar PubMed

6. Singh, I., Lacko, C. S., Zhao, Z., Schmidt, C. E., Rinaldi, C. J. Colloid Interface Sci. 2020, 561, 647–658. https://doi.org/10.1016/j.jcis.2019.11.040.Search in Google Scholar PubMed PubMed Central

7. Jáčová, J., Jořenek, M., Pospíšková, K., Najdekr, L., Zajoncová, L., Friedecký, D., Adam, T. J. Chromatogr. A 2019, 1605, 360355.10.1016/j.chroma.2019.07.009Search in Google Scholar PubMed

8. Hajizadeh, S., Ye, L. Separ. Purif. Technol. 2019, 224, 95–105. https://doi.org/10.1016/j.seppur.2019.05.002.Search in Google Scholar

9. Milakin, K. A., Capáková, Z., Acharya, U., Vajďák, J., Morávková, Z., Hodan, J., Humpolíček, P., Bober, P. Polymer 2020, 122491. https://doi.org/10.1016/j.polymer.2020.122491.Search in Google Scholar

10. Bober, P., Capáková, Z., Acharya, U., Zasońska, B. A., Humpolíček, P., Hodan, J., Hromádková, J., Stejskal, J. Synth. Met. 2019, 252, 122–126. https://doi.org/10.1016/j.synthmet.2019.04.015.Search in Google Scholar

11. Dencheva, N. V., Oliveira, F. D., Braz, J. F., Denchev, Z. Z. Eur. Polym. J. 2020, 122, 109375. https://doi.org/10.1016/j.eurpolymj.2019.109375.Search in Google Scholar

12. Erol, K. J. Macromol. Sci., Part A 2016, 53, 629–635. https://doi.org/10.1080/10601325.2016.1212310.Search in Google Scholar

13. Erol, K., Bolat Bülter, M., Köse, D. A., Kaplan, C. H. J. Poly. Eng. 2021, 41, 671–680. https://doi.org/10.1515/polyeng-2020-0285.Search in Google Scholar

14. Erol, K., Yıldız, E., Alacabey, İ., Karabörk, M., Uzun, L. Environ. Sci. Pollut. Ser. 2019, 26, 33631–33641. https://doi.org/10.1007/s11356-019-06423-0.Search in Google Scholar PubMed

15. Andjelković, U., Giacometti, J., Josić, D. Protein and peptide separations. In Liquid Chromatography; Fanali, S., Haddad, P. R., Poole, C. F., Riekkola, M. L., Eds., 2nd ed.; Elsevier: London, 2017; pp. 107–157.10.1016/B978-0-12-805392-8.00005-0Search in Google Scholar

16. Islas-Valdez, S., López-Rayo, S., Hristov-Emilov, H., Hernández-Apaolaza, L., Lucena, J. J. Int. J. Biol. Macromol. 2020, 142, 163–171. https://doi.org/10.1016/j.ijbiomac.2019.09.088.Search in Google Scholar PubMed

17. Gao, P., Li, J., Li, Z., Hao, J., Zan, L. J. Dairy Sci. 2016, 99, 9493–9501. https://doi.org/10.3168/jds.2015-10655.Search in Google Scholar PubMed

18. Cai, K., Anderson, J., Orchard, J. D., Afdahl, C. D., Dickson, M., Li, Y. Biologicals 2019, 58, 28–34. https://doi.org/10.1016/j.biologicals.2019.01.004.Search in Google Scholar PubMed

19. Briskot, T., Hahn, T., Huuk, T., Hubbuch, J. J. Chromatogr. A 2020, 1611, 460608. https://doi.org/10.1016/j.chroma.2019.460608.Search in Google Scholar PubMed

20. Guo, W., Zhu, X., Cai, J., Huang, L., Cen, P., Xu, Z. Process Biochem. 2012, 47, 960–967. https://doi.org/10.1016/j.procbio.2012.03.003.Search in Google Scholar

21. Wang, C., Geng, X. Process Biochem. 2012, 47, 2262–2266. https://doi.org/10.1016/j.procbio.2012.09.002.Search in Google Scholar

22. Takei, T., Yoshihara, R., Danjo, S., Fukuhara, Y., Evans, C., Tomimatsu, R., Ohzuno, Y., Yoshida, M. Int. J. Biol. Macromol. 2020, 149, 140–147. https://doi.org/10.1016/j.ijbiomac.2020.01.227.Search in Google Scholar PubMed

23. Suner, S. S., Ari, B., Onder, F. C., Ozpolat, B., Ay, M., Sahiner, N. Int. J. Biol. Macromol. 2019, 126, 1150–1157. https://doi.org/10.1016/j.ijbiomac.2019.01.021.Search in Google Scholar PubMed

24. Mansoor, E., Van der Mynsbrugge, J., Head-Gordon, M., Bell, A. T. Catal. Today 2018, 312, 51–65. https://doi.org/10.1016/j.cattod.2018.02.007.Search in Google Scholar

25. Sakata, S., Inoue, Y., Ishihara, K. Biomaterials 2016, 105, 102–108. https://doi.org/10.1016/j.biomaterials.2016.07.043.Search in Google Scholar PubMed

26. Erol, K., Tatar, D., Veyisoğlu, A., Tokatlı, A. J. Polym. Eng. 2021, 41, 144–154. https://doi.org/10.1515/polyeng-2020-0191.Search in Google Scholar

27. Inanan, T., Tüzmen, N., Karipcin, F. Int. J. Biol. Macromol. 2018, 114, 812–820. https://doi.org/10.1016/j.ijbiomac.2018.04.006.Search in Google Scholar PubMed

28. Erol, K., Koncuk Cebeci, B., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121.Search in Google Scholar PubMed

29. Erol, K., Gençer, N., Arslan, M., Arslan, O. Artif. Cell Nanomed. Biotechnol. 2013, 41, 125–130. https://doi.org/10.3109/10731199.2012.696065.Search in Google Scholar PubMed

30. Guo, P. C., Wang, Q., Wang, Z., Dong, Z., He, H., Zhao, P. Int. J. Biol. Macromol. 2018, 107, 2334–2341. https://doi.org/10.1016/j.ijbiomac.2017.10.118.Search in Google Scholar PubMed

31. Cetin, K., Perçin, I., Denizli, F., Denizli, A. Artif. Cell Nanomed. Biotechnol. 2017, 45, 1431–1439. https://doi.org/10.1080/21691401.2016.1243549.Search in Google Scholar PubMed

32. Waifalkar, P. P., Parit, S. B., Chougale, A. D., Sahoo, S. C., Patil, P. S., Patil, P. B. J. Colloid Interface Sci. 2016, 482, 159–164. https://doi.org/10.1016/j.jcis.2016.07.082.Search in Google Scholar PubMed

33. Köse, K., Erol, K., Emniyet, A. A., Köse, D. A., Avcı, G. A., Uzun, L. Appl. Biochem. Biotechnol. 2015, 177, 1025–1039.10.1007/s12010-015-1794-9Search in Google Scholar PubMed

34. Bayramoglu, G., Doz, T., Ozalp, V. C., Arica, M. Y. Food Chem. 2017, 221, 1442–1450. https://doi.org/10.1016/j.foodchem.2016.11.007.Search in Google Scholar PubMed

35. Andjelković, U., Milutinović-Nikolić, A., Jović-Jovičić, N., Banković, P., Bajt, T., Mojović, Z., Vujčić, Z., Jovanović, D. Food Chem. 2015, 168, 262–269.10.1016/j.foodchem.2014.07.055Search in Google Scholar PubMed

36. Taskin, M., Ortucu, S., Unver, Y., Tasar, O. C., Ozdemir, M., Kaymak, H. C. Process Saf. Environ. Protect. 2016, 103, 136–143.10.1016/j.psep.2016.07.006Search in Google Scholar

37. Pressi, G., Dal Toso, R., Dal Monte, R., Carturan, G. J. Sol. Gel Sci. Technol. 2003, 26, 1189–1193. https://doi.org/10.1023/a:1020704118146.10.1023/A:1020704118146Search in Google Scholar

38. Esseland, K., Osei, Y. Nat. Prod. Chem. Res. 2014, 2, 2–6.Search in Google Scholar

39. Andjelković, U., Pićurić, S., Vujčić, Z. Food Chem. 2010, 120, 799–804.10.1016/j.foodchem.2009.11.013Search in Google Scholar

40. Andjelković, U., Theisgen, S., Scheidt, H. A., Petković, M., Huster, D., Vujčić, Z. Biochimie 2012, 94, 510–515.10.1016/j.biochi.2011.08.020Search in Google Scholar PubMed

41. Andjelković, U., Gudelj, I., Klarić, T., Hinneburg, H., Vinković, M., Wittine, K., Dovezenski, N., Vikić-Topić, D., Lauc, G., Vujčić, Z., Josić, D. Electrophoresis 2021, 42, 2626–2636.10.1002/elps.202000092Search in Google Scholar PubMed

42. Köse, K. J. Turk. Chem. Soc. Sect. A: Chem. 2016, 3, 185–204.10.18596/jotcsa.74979Search in Google Scholar

43. Erol, K., Köse, K., Güngüneş, H., Köse, D. A. J. Mol. Struct. 2017, 1130, 753–759. https://doi.org/10.1016/j.molstruc.2016.11.004.Search in Google Scholar

44. Arica, M. Y., Alaeddinoğlu, N. G., Hasirci, V. Enzym. Microb. Technol. 1998, 22, 152–157. https://doi.org/10.1016/s0141-0229(97)00139-7.Search in Google Scholar

45. Yavuz, H., Akgöl, S., Arica, Y., Denizli, A. Macromol. Biosci. 2004, 4, 674–679. https://doi.org/10.1002/mabi.200400028.Search in Google Scholar PubMed

46. Erol, K. Artif. Cell Nanomed. Biotechnol. 2017, 45, 31–38. https://doi.org/10.1080/21691401.2016.1215326.Search in Google Scholar PubMed

47. Vazquez, R., Perfusion, L. D. F. Perfusion 2013, 28, 557–559. https://doi.org/10.1177/0267659113498921.Search in Google Scholar PubMed

48. Labus, K., Wolanin, K., Radosinski, L. Catalysts 2020, 10, 489–511. https://doi.org/10.3390/catal10050489.Search in Google Scholar

49. Anah, L., Astrini, N. IOP Conf. Series: Earth Environ. Sci. 2018, 160, 012017. https://doi.org/10.1088/1755-1315/160/1/012017.Search in Google Scholar

50. Amin, M. T., Alazba, A. A., Shafiq, M. Water Sci. Technol. 2017, 76, 1805–1815. https://doi.org/10.2166/wst.2017.366.Search in Google Scholar PubMed

51. Akkaya, B., Uzun, L., Altintaş, E. B., Candan, F., Denizli, A. J. Macromol. Sci., Part A 2009, 46, 232–239. https://doi.org/10.1080/10601320802637086.Search in Google Scholar

52. Uygun, M., Aktaş Uygun, D., Özçalışkan, E., Akgöl, S., Denizli, A. J. Chromatogr. B 2012, 887–888, 73–78. https://doi.org/10.1016/j.jchromb.2012.01.014.Search in Google Scholar PubMed

Received: 2021-12-26
Accepted: 2022-03-15
Published Online: 2022-05-13
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0373/html
Scroll to top button