Home Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
Article
Licensed
Unlicensed Requires Authentication

Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)

  • Yong-Chan Chung , Gyo Young Gu , Ji Eun Park and Byoung Chul Chun ORCID logo EMAIL logo
Published/Copyright: June 14, 2021
Become an author with De Gruyter Brill

Abstract

Poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate) chains were grafted to polyurethane (PU) using the graft-polymerization method in order to enhance the water compatibility of PU. The grafted chains were ionized into cationic or anionic form depending on the addition of strong acid or base. The grafted polymer chains did not affect the melting, crystallization, and glass transition of the soft segment of PU due to the softness of the chain. The cross-link density and solution viscosity increased due to the linking between the grafted chains, but the slight cross-linking did not disturb the solvation of PU. The slight cross-linking notably enhanced the maximum tensile stress and shape recovery capability, and the water compatibility of PU could be notably enhanced by the grafted ionized chains. Overall, the grafting of ionized polymeric chains onto PU could enhance the hydrophilicity of PU surface, tensile strength, and shape recovery capability.


Corresponding author: Byoung Chul Chun, School of Nano Engineering, Inje University, Gimhae 50834, South Korea, E-mail:

Award Identifier / Grant number: NRF-2016R1D1A1B01014308

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The financial support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01014308) is deeply appreciated.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., Jaafar, J. Hydrophilic polymer-based membrane for oily wastewater treatment: a review. Separ. Purif. Technol. 2020, 233, 116007; https://doi.org/10.1016/j.seppur.2019.116007.Search in Google Scholar

2. Zhang, H. Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 2014, 55, 699–714; https://doi.org/10.1016/j.polymer.2013.12.064.Search in Google Scholar

3. Bergmann, N. M., Peppas, N. A. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Prog. Polym. Sci. 2008, 33, 271–288; https://doi.org/10.1016/j.progpolymsci.2007.09.004.Search in Google Scholar

4. Fréchet, J. M. J. Functional polymers: from plastic electronics to polymer-assisted therapeutics. Prog. Polym. Sci. 2005, 30, 844–857; https://doi.org/10.1016/j.progpolymsci.2005.06.005.Search in Google Scholar

5. Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262; https://doi.org/10.1016/j.polymer.2006.01.084.Search in Google Scholar

6. Deng, J., Wang, L., Liu, L., Yang, W. Developments and new applications of UV-induced surface graft polymerizations. Prog. Polym. Sci. 2009, 34, 156–193; https://doi.org/10.1016/j.progpolymsci.2008.06.002.Search in Google Scholar

7. Hasegawa, S., Takahashi, S., Iwase, H., Koizumi, S., Morishita, N., Sato, K., Narita, T., Ohnuma, M., Maekawa, Y. Radiation-induced graft polymerization of functional monomer into poly(ether ether ketone) film and structure-property analysis of the grafted membrane. Polymer 2011, 52, 98–106; https://doi.org/10.1016/j.polymer.2010.11.009.Search in Google Scholar

8. Ang, M. B. M. Y., Huang, S. H., Chang, M. W., Lai, C. L., Tsai, H. A., Hung, W. S., Hu, C. C., Lee, K. R. Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes. Separ. Purif. Technol. 2020, 235, 116155; https://doi.org/10.1016/j.seppur.2019.116155.Search in Google Scholar

9. Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nyström, M., Mänttäri, M. Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. J. Membr. Sci. 2004, 239, 55–64; https://doi.org/10.1016/j.memsci.2003.09.029.Search in Google Scholar

10. Chittrakarn, T., Tirawanichakul, Y., Sirijarukul, S., Yuenyao, C. Plasma induced graft polymerization of hydrophilic monomers on polysulfone gas separation membrane surfaces. Surf. Coating. Technol. 2016, 296, 157–163; https://doi.org/10.1016/j.surfcoat.2016.04.018.Search in Google Scholar

11. Steinmetz, H. P., Rudnick-Glick, S., Natan, M., Banin, E., Margel, S. Graft polymerization of styryl bisphosphonate monomer onto polypropylene films for inhibition of biofilm formation. Colloids Surf., B 2016, 147, 300–306; https://doi.org/10.1016/j.colsurfb.2016.08.007.Search in Google Scholar PubMed

12. Huang, C. Y., Lu, W. L., Feng, Y. C. Effect of plasma treatment on the AAc grafting percentage of high-density polyethylene. Surf. Coating. Technol. 2003, 167, 1–10; https://doi.org/10.1016/s0257-8972(02)00817-4.Search in Google Scholar

13. Kim, S. R. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000, 77, 1913–1920; https://doi.org/10.1002/1097-4628(20000829)77:9<1913::aid-app7>3.0.co;2-#.10.1002/1097-4628(20000829)77:9<1913::AID-APP7>3.0.CO;2-#Search in Google Scholar

14. Shiheng, Y., Li, R., Yingjun, W. Argon plasma-induced graft polymerization of PEGMA on chitosan membrane surface for cell adhesion improvement. Plasma Sci. Technol. 2013, 15, 1041–1046.10.1088/1009-0630/15/10/15Search in Google Scholar

15. Yilgor, I., Yilgor, E., Wilkes, G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 2015, 58, A1–A36; https://doi.org/10.1016/j.polymer.2014.12.014.Search in Google Scholar

16. Das, A., Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101; https://doi.org/10.1016/j.aiepr.2020.07.002.Search in Google Scholar

17. Engels, H. W., Pirkl, H. G., Albers, R., Albach, R. W., Krause, J., Hoffmann, A., Casselmann, H., Dormish, J. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441; https://doi.org/10.1002/anie.201302766.Search in Google Scholar

18. Kucinska-Lipka, J., Gubanska, I., Strankowski, M., Cieśliński, H., Filipowicz, N., Janik, H. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration. Mater. Sci. Eng. C 2017, 75, 671–681; https://doi.org/10.1016/j.msec.2017.02.052.Search in Google Scholar

19. Zia, K. M., Zuber, M., Barikani, M., Bhatti, I. A., Khan, M. B. Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids Surf., B 2009, 72, 248–252; https://doi.org/10.1016/j.colsurfb.2009.04.011.Search in Google Scholar

20. Kanagaraj, P., Mohamed, I. M. A., Huang, W., Liu, C. Membrane fouling mitigation for enhanced water flux and high separation of humic acid and copper ion using hydrophilic polyurethane modified cellulose acetate ultrafiltration membranes. React. Funct. Polym. 2020, 150, 104538; https://doi.org/10.1016/j.reactfunctpolym.2020.104538.Search in Google Scholar

21. Ahmed, E. M. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 2015, 6, 105–121; https://doi.org/10.1016/j.jare.2013.07.006.Search in Google Scholar PubMed PubMed Central

22. Chen, Y., Wang, R., Wang, Y., Zhao, W., Sun, S., Zhao, C. Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior. Int. J. Biol. Macromol. 2017, 98, 1–11; https://doi.org/10.1016/j.ijbiomac.2017.01.102.Search in Google Scholar PubMed

23. Gennen, S., Grignard, B., Thomassin, J.-M., Gilbert, B., Vertruyen, B., Jerome, C., Detrembleur, C. Polyhydroxyurethane hydrogels: synthesis and characterizations. Eur. Polym. J. 2016, 84, 849–862; https://doi.org/10.1016/j.eurpolymj.2016.07.013.Search in Google Scholar

24. Li, K., Zhou, C., Liu, S., Yao, F., Fu, G., Xu, L. Preparation of mechanically-tough and thermo-responsive polyurethane-poly(ethylene glycol) hydrogels. React. Funct. Polym. 2017, 117, 81–88; https://doi.org/10.1016/j.reactfunctpolym.2017.06.010.Search in Google Scholar

25. Tan, K., Obendorf, S. K. Development of an antimicrobial microporous polyurethane membrane. J. Membr. Sci. 2007, 289, 199–209; https://doi.org/10.1016/j.memsci.2006.11.054.Search in Google Scholar

26. Chunli, H., Miao, W., Xianmei, C., Xiaobo, H., Li, L., Haomiao, Z., Jian, S., Jiang, Y. Chemically induced graft copolymerization of 2-hydroxyethyl methacrylate onto polyurethane surface for improving blood compatibility. Appl. Surf. Sci. 2011, 258, 755–760.10.1016/j.apsusc.2011.08.074Search in Google Scholar

27. Bagheri, M., Pourmoazzen, Z. Synthesis and properties of new liquid crystalline polyurethanes containing inesogenic side chain. React. Funct. Polym. 2008, 68, 507–518; https://doi.org/10.1016/j.reactfunctpolym.2007.10.032.Search in Google Scholar

28. Buruiana, E. C., Melinte, V., Buruiana, T., Lippert, T., Yoshikawa, H., Mashuhara, H. Synthesis and characterisation of new hard polyurethanes with triazene pendants. J. Photochem. Photobiol., A 2005, 171, 261–267; https://doi.org/10.1016/j.jphotochem.2004.11.001.Search in Google Scholar

29. Chung, Y. C., Kim, H. Y., Choi, J. W., Chun, B. C. Graft polymerization of 4‐imidazole acrylic acid onto polyurethane for the improvement of water compatibility and antifungal activity. Polym. Eng. Sci. 2018, 58, 2088–2097; https://doi.org/10.1002/pen.24820.Search in Google Scholar

30. Chung, Y. C., Bae, J. C., Choi, J. W., Chun, B. C. The preparation of hydrogel-like polyurethane using the graft polymerization of N,N-dimethylaminoethyl methacrylate and acrylic acid. Polym. Bull. 2019, 76, 6371–6386; https://doi.org/10.1007/s00289-019-02726-x.Search in Google Scholar

31. Chung, Y. C., Kim, D. E., Choi, J. W., Chun, B. C. The effect of attached tetracycline and hydrophilic groups on the enhancement of antibacterial effectiveness and low temperature flexibility of polyurethane. Polym. Adv. Technol. 2019, 30, 1696–1708; https://doi.org/10.1002/pat.4600.Search in Google Scholar

32. Chung, Y. C., Kim, H. Y., Choi, J. W., Chun, B. C. Modification of polyurethane by graft polymerization of poly(acrylic acid) for the control of molecular interaction and water compatibility. Polym. Bull. 2015, 72, 2685–2703; https://doi.org/10.1007/s00289-015-1429-x.Search in Google Scholar

33. Sekkar, V., Gopalakrishnan, S., Ambika Devi, K. Studies on allophanate–urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics. Eur. Polym. J. 2013, 39, 1281–1290.10.1016/S0014-3057(02)00364-6Search in Google Scholar

34. Petrovic, Z. S., Javni, I., Divjakovic, V. Structure and physical properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. J. Polym. Sci. B Polym. Phys. 1998, 36, 221–235; https://doi.org/10.1002/(sici)1099-0488(19980130)36:2<221::aid-polb3>3.0.co;2-u.10.1002/(SICI)1099-0488(19980130)36:2<221::AID-POLB3>3.0.CO;2-USearch in Google Scholar

35. Bankoti, K., Rameshbabu, A. P., Datta, S., Maity, P. P., Goswami, P., Datta, P., Ghosh, A., Mitra, S. K., Dhara, S. Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Mater. Sci. Eng. C 2017, 81, 133–143; https://doi.org/10.1016/j.msec.2017.07.018.Search in Google Scholar

36. Chung, Y. C., Choi, J. W., Chung, H. M., Chun, B. C. The MDI-mediated lateral crosslinking of polyurethane copolymer and the impact on tensile properties and shape memory effect. Bull. Kor. Chem. Soc. 2012, 33, 692–694; https://doi.org/10.5012/bkcs.2012.33.2.692.Search in Google Scholar

37. Choi, T., Weksler, J., Padsalgikar, A., Runt, J. Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer 2010, 51, 4375–4382; https://doi.org/10.1016/j.polymer.2010.07.030.Search in Google Scholar

38. Russo, P., Lavorgna, M., Piscitelli, F., Acierno, D., Di Maio, L. Thermoplastic polyurethane films reinforced with carbon nanotubes: the effect of processing on the structure and mechanical properties. Eur. Polym. J. 2013, 49, 379–388; https://doi.org/10.1016/j.eurpolymj.2012.11.008.Search in Google Scholar

39. Chung, Y. C., Kim, S. H., Bae, J. C., Chun, B. C. Grafting of triphenylmethyl group onto polyurethane and the impact on the shape recovery and flexibility at extremely low temperature. Fibers Polym. 2018, 19, 1157–1165; https://doi.org/10.1007/s12221-018-8082-6.Search in Google Scholar

40. Lin, C. H., Jao, W. C., Yeh, Y. H., Lin, W. C., Yang, M. C. Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS–polyurethane–HEMA hydrogel. Colloids Surf., B 2009, 70, 132–141; https://doi.org/10.1016/j.colsurfb.2008.12.020.Search in Google Scholar

Received: 2021-03-30
Accepted: 2021-05-20
Published Online: 2021-06-14
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0107/pdf?lang=en
Scroll to top button