Startseite Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory

  • Sabeeh Khaliq ORCID logo und Zaheer Abbas EMAIL logo
Veröffentlicht/Copyright: 14. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Blade coating process is studied in a nonisothermal analysis of viscous fluid with temperature-dependent viscosity by employing both plane and exponential coaters. The governing expressions are nondimensionalized and simplified under the assumption of lubrication approximation theory. Then, perturbative technique is used to find the solution for velocity, pressure, temperature distribution, and coating thickness. The influence of dimensionless parameter ε, Graetz number Gz, and normalized coating thickness γ on the velocity, maximum pressure, temperature distribution, and pressure gradient is portrayed through graphs, whereas load and coating thickness variations reported in a tabular manner. It is found that maximum pressure, coating thickness, and blade load decreases for temperature variations in viscosity, which leads to improved efficiency of blade coating process and life of the moving substrate.


Corresponding author: Zaheer Abbas, Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

A 1 = ( 73 152 Y 108 Y 2 18 Y 3 + 36 Y 4 )  ,

A 2 = ( 159 31 Y + 411 Y 2 + 351 Y 3 2775 Y 4 + 3945 Y 5 2475 Y 6 + 630 Y 7 )  ,

A 3 = ( 337 3634 Y + 34822 Y 2 177984 Y 3 529800 Y 4 993876 Y 5 + 1225968 Y 6 1004304 Y 7 + 531846 Y 8 166698 Y 9 + 23814 Y 10 )  ,

A 4 = ( 238 2567 Y + 27738 Y 2 161242 Y 3 559940 Y 4 1263420 Y 5 + 1931200 Y 6 2009000 Y 7 + 1374920 Y 8 564480 Y 9 + 105840 Y 10 )  ,

A 5 = ( 3 30 Y + 322 Y 2 1856 Y 3 6460 Y 4 14792 Y 5 + 23224 Y 6 25088 Y 7 + 18032 Y 8 7840 Y 9 + 1568 Y 10 )  ,

A 6 = ( 17 + 13 Y + 3 Y 2 + 128 Y 3 580 Y 4 960 Y 5 800 Y 6 + 280 Y 7 )

A 7 = ( 4603 50947 Y + 550313 Y 2 3190292 Y 3 10948756 Y 4 24159240 Y 5 + 35738400 Y 6 35644560 Y 7 + 23214240 Y 8 8996400 Y 9 + 1587600 Y 10 )  ,

A 8 = ( 127 + 88 Y + 168 Y 2 778 Y 3 4142 Y 4 + 6750 Y 5 5250 Y 6 + 1680 Y 7 )  ,

A 9 = ( 6329 70396 Y + 752624 Y 2 4304296 Y 3 + 14463068 Y 4 30974170 Y 5 + 44089610 Y 6 42005740 Y 7 + 25983720 Y 8 9525600 Y 9 + 1587600 Y 10 )  ,

A 10 = ( 1 254 Y + 1311 Y 2 3129 Y 3 3990 Y 4 2730 Y 5 + 810 Y 6 )  ,

A 11 = ( 16 + 39 Y 31 Y 2 6 Y 3 + 12 Y 4 )  ,

A 12 = ( 397 + 153 Y + 973 Y 2 + 1293 Y 3 9111 Y 4 + 13695 Y 5 9225 Y 6 + 2520 Y 7 )  ,

A 13 = ( 2087 22993 Y + 232207 Y 2 1248283 Y 3 + 2906405 Y 4 7709045 Y 5 + 10011735 Y 6 8637720 Y 7 + 4814720 Y 8 1587600 Y 9 + 238140 Y 10 )  ,

A 14 = ( 2 + 13 Y 27 Y 2 + 18 Y 3 )  ,

A 15 = ( 1 56 Y + 258 Y 2 543 Y 3 + 591 Y 4 333 Y 5 + 81 Y 6 )  ,

A 16 = ( 11 + 29 Y 26 Y 2 6 Y 3 + 12 Y 4 )  ,

A 17 = ( 133 + 72 Y + 272 Y 2 + 607 Y 3 3748 Y 4 + 5905 Y 5 4275 Y 6 + 1260 Y 7 )  ,

A 18 = ( 6869 76181 Y + 797109 Y 2 4447031 Y 3 + 14491273 Y 4 29896455 Y 5 + 40737405 Y 6 36970500 Y 7 + 21710430 Y 8 7541100 Y 9 + 1190700 Y 10 )  ,

A 19 = ( 2 + 13 Y 27 Y 2 + 18 Y 3 )  ,

A 20 = ( 1 179 Y + 901 Y 2 2054 Y 3 + 2440 Y 4 1515 Y 5 + 405 Y 6 )  .

References

1. Booth, G. L. Coating Equipment and Processes; Lockwood Publishing: New York, 1970.Suche in Google Scholar

2. Ruschak, K. J. Coating flows. Annu. Rev. Fluid Mech. 1985, 17, 65–89; https://doi.org/10.1146/annurev.fl.17.010185.000433.Suche in Google Scholar

3. Middleman, S. Fundamentals of Polymer Processing; McGraw–Hill: New York, 1977.Suche in Google Scholar

4. Trist, A. R. U.S. Patent 2,368,176, 2,593,074 and 2,796,846, 1945.Suche in Google Scholar

5. Kistler, S. F., Schweizer, P. M. Liquid Film Coating; Chapman & Hall: London, United Kingdom, 1997.10.1007/978-94-011-5342-3Suche in Google Scholar

6. Ross, A. B., Wilson, S. K., Duffy, B. R. Blade coating of a power-law fluid. Phys. Fluids 1999, 11, 958–970; https://doi.org/10.1063/1.869968.Suche in Google Scholar

7. Hsu, T. C., Malone, M., Laurence, R. L., Middleman, J. Separating forces in blade coating of viscous and viscoelastic liquids. J. Non-Newtonian Fluid Mech. 1985, 18, 273–294; https://doi.org/10.1016/0377-0257(85)87003-8.Suche in Google Scholar

8. Saita, F. A. Elastohydrodynamics and Flexible Blade Coating. Ph.D. Thesis, University of Minnesota, Minneapolis, 1984.Suche in Google Scholar

9. Corvalán, C. M., Saita, F. A. Blade coating on a compressible substrate. Chem. Eng. Sci. 1995, 50, 1769–1783; https://doi.org/10.1016/0009-2509(95)00013-u.Suche in Google Scholar

10. Eklund, D. E. Influence of blade geometry and blade pressure on the appearance of a coated surface. Tappi J. 1984, 67, 66–70.Suche in Google Scholar

11. Pranckh, F. R., Scriven, L. E. The physics of blade coating of a deformable substrate. Tappi J. 1990, 73, 163–173.Suche in Google Scholar

12. Osswald, T. A., Ortiz, J. P. H. Polymer Processing; Carl Hanser Verlag: Munich, 2006.10.3139/9783446412866Suche in Google Scholar

13. Siddiqui, A. M., Bhatti, S., Rana, M. A., Zahid, M. Blade coating analysis of a Williamson fluid. Results Phys. 2017, 7, 2845–2850; https://doi.org/10.1016/j.rinp.2017.07.076.Suche in Google Scholar

14. Liu, Y., Lee, D. Y., Monteux, C., Crosby, A. J. Hyperbranched polymer structures via flexible blade flow coating. J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 32–37; https://doi.org/10.1002/polb.23952.Suche in Google Scholar

15. Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus 2020, 135, 1–13; https://doi.org/10.1140/epjp/s13360-020-00812-y.Suche in Google Scholar

16. Sajid, M., Siddique, H., Ali, N., Javed, M. A. Calendering of nonisothermal Rabinowitsch fluid. J. Polym. Eng. 2018, 38, 83–92; https://doi.org/10.1515/polyeng-2016-0294.Suche in Google Scholar

17. Rana, M. A., Siddiqui, A. M., Bhatti, S., Zahid, M. The study of the blade coating process lubricated with Powell-Eyring fluid. J. Nanofluids 2018, 7, 52–61; https://doi.org/10.1166/jon.2018.1419.Suche in Google Scholar

18. Sajid, M., Shahzad, H., Mughees, M. Mathematical modeling of slip and magnetohydrodynamics effects in blade coating. J. Plastic Film Sheeting 2018, 35, 9–21; https://doi.org/10.1177/8756087918777782.Suche in Google Scholar

19. Rana, M. A., Zahid, M., Bhatti, S., Siddiqui, A. M. Theoretical study of the blade coating of non-isothermal viscoplastic fluids. J. Nanofluids 2018, 7, 184–194; https://doi.org/10.1166/jon.2018.1422.Suche in Google Scholar

20. Sajid, M., Mughees, M., Ali, N., Shahzad, H. A theoretical analysis of blade coating for third-grade fluid. J. Plastic Film Sheeting 2019, 35, 218–238; https://doi.org/10.1177/8756087919828417.Suche in Google Scholar

21. Atif, H. M., Ali, N., Javed, M. A., Sajid, M. A numerical analysis of calendering of oldroyd 4-constant fluid. J. Polym. Eng. 2018, 38, 1007–1016; https://doi.org/10.1515/polyeng-2018-0083.Suche in Google Scholar

22. Shahzad, H., Wang, X., Mughees, M., Sajid, M., Ali, N. A mathematical analysis for the blade coating process of oldroyd 4-constant fluid. J. Polym. Eng. 2019, 39, 852–860; https://doi.org/10.1515/polyeng-2019-0195.Suche in Google Scholar

23. Khaliq, S., Abbas, Z. A theoretical analysis of roll-over-web coating assessment of viscous nanofluid containing Cu-water nanoparticles. J. Plastic Film Sheeting 2020, 36, 55–75; https://doi.org/10.1177/8756087919866485.Suche in Google Scholar

24. Mughees, M., Sajid, M., Ali, N., Shahzad, H. Nonisothermal analysis of a couple stress fluid in blade coating process. Polym. Eng. Sci. 2020, 60, 1129–1137; https://doi.org/10.1002/pen.25366.Suche in Google Scholar

25. Zahid, M., Zafar, M., Rana, M. A., Lodhi, M. S., Awan, A. S., Ahmad, B. Mathematical analysis of a non-Newtonian polymer in the forward roll coating process. J. Polym. Eng. 2020, 40, 703–712; https://doi.org/10.1515/polyeng-2019-0297.Suche in Google Scholar

26. Khaliq, S., Abbas, Z. Analysis of calendering process of non-isothermal flow of non-Newtonian fluid: a perturbative and numerical study. J. Plastic Film Sheeting 2021, published ahead of print; https://doi.org/10.1177/8756087920979024.Suche in Google Scholar

27. Abbas, Z., Khaliq, S. Roll-over-web coating analysis of micropolar-Casson fluid: a theoretical investigation. J. Polym. Eng. 2021, 41, 289–298; https://doi.org/10.1515/polyeng-2020-0342.Suche in Google Scholar

28. Khaliq, S., Abbas, Z. Theoretical analysis of blade coating process using simplified Phan‐Thien‐Tanner fluid model: an analytical study. Polym. Eng. Sci. 2021, 61, 301–313; https://doi.org/10.1002/pen.25576.Suche in Google Scholar

29. Nayak, M. K., Dash, G. C., Singh, L. P. Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity. Int. J. Heat Mass Tran. 2014, 79, 1087–1095; https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.057.Suche in Google Scholar

30. Arcos, J. C., Bautista, O., Méndez, F., Bautista, E. G. Sensitivity of calendered thickness to temperature variations for Newtonian fluids. Eur. J. Mech. B Fluid 2012, 36, 97–103; https://doi.org/10.1016/j.euromechflu.2012.03.012.Suche in Google Scholar

31. Khan, Z., Rasheed, H. U., Tlili, I., Khan, I., Abbas, T. Runge-Kutta 4th-order method analysis for viscoelastic oldroyd 8-constant fluid used as coating material for wire with temperature dependent viscosity. Sci. Rep. 2018, 8, 1–13; https://doi.org/10.1117/1.oe.57.7.076104.Suche in Google Scholar

32. Khan, Z., Rasheed, H. U., Islam, S., Noor, S., Khan, I., Abbas, T., Khan, W., Seikh, A. H., Sherif, E. S. M., Nisar, K. S. Heat transfer effect on viscoelastic fluid used as a coating material for wire with variable viscosity. Coatings 2020, 10, 163; https://doi.org/10.3390/coatings10020163.Suche in Google Scholar

33. Turkyilmazoglu, M. Unsteady mhd flow with variable viscosity: applications of spectral scheme. Int. J. Therm. Sci. 2010, 49, 563–570; https://doi.org/10.1016/j.ijthermalsci.2009.10.007.Suche in Google Scholar

34. Turkyilmazoglu, M. Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity. Int. J. Therm. Sci. 2011, 50, 88–96; https://doi.org/10.1016/j.ijthermalsci.2010.08.016.Suche in Google Scholar

35. Azam, M., Shakoor, A., Rasool, H. F., Khan, M. Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: a revised approach. Int. J. Heat Mass Tran. 2019, 131, 495–505; https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.022.Suche in Google Scholar

36. Azam, M., Xu, T., Shakoor, A., Khan, M. Effects of Arrhenius activation energy in development of covalent bonding in axisymmetric flow of radiative-cross nanofluid. Int. Commun. Heat Mass Tran. 2020, 113, 104547; https://doi.org/10.1016/j.icheatmasstransfer.2020.104547.Suche in Google Scholar

Received: 2021-03-17
Accepted: 2021-05-15
Published Online: 2021-06-14
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0087/pdf
Button zum nach oben scrollen