Home Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
Article
Licensed
Unlicensed Requires Authentication

Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites

  • Huihui Zhang ORCID logo EMAIL logo , Yuzeng Li , Gesheng Yang , Minmin Yu and Huili Shao
Published/Copyright: April 30, 2020
Become an author with De Gruyter Brill

Abstract

The flax and equivalent proportion of poly(L-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) were melt compounded and injection molded to prepare flax reinforced polylactide stereocomplex (sc-PLA) bio-composite, and two different coupling agents, hexamethylene diisocyanate (HMDI) and maleic anhydride grafted polypropylene (MAPP), were used to modify the interface of composite, then the influence of different interfacial modification on the structure and properties of composite was investigated. The results showed HMDI modification decreased the total crystallinity of composite but promoted the formation of stereocomplex crystallites (sc), whereas MAPP modification could improve both the total crystallinity and sc crystallinity. HMDI modification significantly improved the interfacial compatibility of composite, and thereby effectively improved the tensile strength and initial storage modulus of composite. By contrast, the interfacial compatibility of flax/sc-PLA composite was weakened by MAPP modification. Although the tensile properties of flax/sc-PLA/MAPP composite decreased, the impact strength of composite was increased by 12.1% than the unmodified composite. Therefore, the tailored flax/sc-PLA composite with varying properties could be prepared by different interfacial modification.


Corresponding author: Huihui Zhang, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China, E-mail:

Award Identifier / Grant number: 16ZR1401600

Award Identifier / Grant number: 16D110620

  1. Research funding: This work was supported by the Natural Science Foundation of Shanghai (16ZR1401600); and Fundamental Research Funds for the Central Universities (16D110620).

Acknowledgments

We thank Research Center of Analysis and Measurement, Donghua University and Equipment platform of College of Material Science and Engineering, Donghua University for the analysis and characterization of flax/sc-PLA composites.

References

1. Ikada Y., Jamshidi K., Tsuji H., Hyon S. H. Macromolecules 1987, 20, 904–906. https://doi.org/10.1021/ma00170a034.Search in Google Scholar

2. Tsuji H. Macromol. Biosci. 2005, 5, 569–597. https://doi.org/10.1002/mabi.200500062.Search in Google Scholar

3. Tsuji H., Ikada Y. Polymer 1999, 40, 6699–6708. https://doi.org/10.1016/S0032-3861(99)00004-X.Search in Google Scholar

4. Tsuji H., Ikada Y. Macromolecules 1993, 26, 6918–6926. https://doi.org/10.1021/ma00077a032.Search in Google Scholar

5. Xu H., Tang S., Chen J., Xin P., Pu W., Lu Y. Polym. Bull. 2012, 68, 1135–1151. https://doi.org/10.1007/s00289-011-0673-y.Search in Google Scholar

6. Srithep Y., Pholharn D., Turng L. S., Veang-in O. Polym. Degrad. Stab. 2015, 120, 290–299. https://doi.org/10.1016/j.polymdegradstab.2015.07.017.Search in Google Scholar

7. Ming R., Yang G., Li Y., Wang R., Zhang H., Shao H. Polym. Compos. 2017, 38, 472–478. https://doi.org/10.1002/pc.23605.Search in Google Scholar

8. Yu T., Ren J., Li S., Yuan H., Li Y. Compos. Appl. Sci. Manuf. 2010, 41, 499–505. https://doi.org/10.1016/j.compositesa.2009.12.006.Search in Google Scholar

9. Li X., Zheng X., Wu Y. Acta Mater. Compos. Sin. 2012, 29, 94–98. (in Chinese). https://doi.org/10.13801/j.cnki.fhclxb.2012.04.018.Search in Google Scholar

10. Huda M. S., Drzal L. T., Misra M., Mohanty A. K. J. Appl. Polym. Sci. 2006, 102, 4856–4869. https://doi.org/10.1002/app.24829.Search in Google Scholar

11. Ganster J., Erdmann J., Fink H. P. Kunststoffe International 2011, 12, 46–49.Search in Google Scholar

12. Ganster J., Fink H. P. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia S., Kaith B. S., Kaur I., Eds. Springer Berlin Heidelberg: Germany, 2011, p. 500, Chapter 18. https://doi.org/10.1007/978-3-642-17370-7_18.Search in Google Scholar

13. Li Y., Li Q., Yang G., Ming R., Yu M., Zhang H., Shao H. Adv. Polym. Tech. 2018, 898, 2329–2337. https://doi.org/10.1002/adv.21824.Search in Google Scholar

14. Sarasua J. R., Arraiza A. L., Balerdi P., Maiza I. Polym. Eng. Sci. 2005, 45, 745–753. https://doi.org/10.1002/pen.20331.Search in Google Scholar

15. Zhang H., Ming R., Yang G., Li Y., Li Q., Shao H. Polym. Eng. Sci. 2015, 55, 2553–2558. https://doi.org/10.1002/pen.24147.Search in Google Scholar

16. Wang H., Sun X., Seib P. J. Appl. Polym. Sci. 2001, 82, 1761–1767. https://doi.org/10.1002/app.2018.Search in Google Scholar

17. Wang Y. M., Mano J. F. J. Appl. Polym. Sci. 2008, 107, 1621–1627. https://doi.org/10.1002/app.27260.Search in Google Scholar

Received: 2020-01-15
Accepted: 2020-03-09
Published Online: 2020-04-30
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0010/pdf?lang=en
Scroll to top button