Startseite Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering

  • Mohd Syahir Anwar Hamzah , Saiful Izwan Abd Razak EMAIL logo , Mohammed Rafiq Abdul Kadir , Siti Pauliena Mohd Bohari , Nadirul Hasraf Mat Nayan und Joseph Sahaya Thangaraj Anand
Veröffentlicht/Copyright: 30. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work reports the fabrication and characterizations of porous scaffold made up of polylactic acid (PLA) with the inclusion of pectin (1, 3, 5, 7, 9, 11 wt%) for potential tissue engineering material. The composite scaffold was prepared using a facile method of freeze extraction. Based on the physical evaluations, the scaffold was suggested to be optimum at 5 wt% of pectin loading. Water contact angle of the scaffold was significantly reduced to 46.5o with the inclusion of 5 wt% of pectin. Morphological and topographic of the PLA scaffold revealed that the pectin induced more porous structure and its surface became rougher which was suitable for cell attachment and proliferation. In vitro studies of the PLA/pectin composite scaffold using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidelt (MTT) assay revealed good biocompatibility whereas Live-Dead kit assay resulted in 91% cell viability after 7 days of incubation.


Corresponding author: Saiful Izwan Abd Razak, Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia; and BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, 81300, Skudai, Johor, Malaysia, E-mail:

Award Identifier / Grant number: 03G83, 04G53

  1. Research funding: Financial support from the Universiti Teknologi Malaysia grant number 04G53 and 03G83 are gratefully acknowledged.

References

1. Grémare A., Guduric V., Bareille R., Heroguez V., Latour S., L'heureux N., Fricain J. C., Catros S., Le Nihouannen D. J. Biomed. Mater. Res. Part A. 2018, 106, 887–894. https://doi.org/10.1002/jbm.a.36289.Suche in Google Scholar

2. Moffat K. L., Goon K., Moutos F. T., Estes B. T., Oswald S. J., Zhao X., Guilak F. Macromol. Biosci. 2018, 18, 1800140. https://doi.org/10.1002/mabi.201800140.Suche in Google Scholar

3. Zhang C., Zhai T., Turng L. S. J. Polym. Eng. 2018, 38, 409–417. https://doi.org/10.1515/polyeng-2017-0194.Suche in Google Scholar

4. Afshar H. A., Ghaee A. Carbohydr. Polym. 2016, 151, 1120–1131. https://doi.org/10.1016/S0928-4931(01)00338-1.Suche in Google Scholar

5. Ghorbani F., Moradi L., Shadmehr M. B., Bonakdar S., Droodinia A., Safshekan F. Mater. Sci. Eng.: C. 2017, 81, 74–83. https://doi.org/10.1016/j.msec.2017.04.150.Suche in Google Scholar

6. Da L., Gong M., Chen A., Zhang Y., Huang Y., Guo Z., Li S., Li-Ling J., Zhang L., Xie H. Acta Biomater. 2017, 59, 45–57. https://doi.org/10.1016/j.actbio.2017.05.041.Suche in Google Scholar

7. Lin H. Y., Chen H. H., Chang S. H., Ni T. S. J. Biomater. Sci. Polym. Ed. 2013, 24, 470–484. https://doi.org/10.1080/09205063.2012.693047.Suche in Google Scholar

8. Wang J., Nor Hidayah Z., Razak S. I. A., Kadir M. R., Nayan N. H., Li Y., Amin K. A. Compos. Interfac. 2019, 26, 465–478. https://doi.org/10.1080/09276440.2018.1508266.Suche in Google Scholar

9. Thauvin C., Schwarz B., Delie F., Allémann E. Int. J. Pharm. 2018, 548, 771–777. https://doi.org/10.1016/j.ijpharm.2017.11.001.Suche in Google Scholar

10. Abudula T., Saeed U., Memic A., Gauthaman K., Hussain M. A., Al-Turaif H. J. Polym. Res. 2019, 26, 110. https://doi.org/10.1007/s10965-019-1772-y.Suche in Google Scholar

11. Wang L., Wang D., Zhou Y., Zhang Y., Li Q., Shen C. Polym. Adv. Technol. 2019, 30, 2539–2548. https://doi.org/10.1002/pat.4701.Suche in Google Scholar

12. Suzuki A., Nagata F., Inagaki M., Kato K. Trans. Mater. Res. Soc. Jpn. 2018, 43, 271–274. https://doi.org/10.14723/tmrsj.43.271.Suche in Google Scholar

13. Bhaskar B., Owen R., Bahmaee H., Wally Z., Sreenivasa Rao P., Reilly G. C. J. Biomed. Mater. Res. Part A. 2018, 106, 1334–1340. https://doi.org/10.1002/jbm.a.36336.Suche in Google Scholar

14. Teixeira B. N., Aprile P., Mendonça R. H., Kelly D. J., Thiré R. M. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2019, 107, 37–49. https://doi.org/10.1002/jbm.b.34093.Suche in Google Scholar

15. Budyanto L., Goh Y. Q., Ooi C. P. J. Mater. Sci.: Mater. Med. 2009, 20, 105–111. https://doi.org/10.1007/s10856-008-3545-8.Suche in Google Scholar

16. Ghaleh H., Abbasi F., Alizadeh M., Khoshfetrat A. B. Mater. Sci. Eng.: C. 2015, 49, 807–815. https://doi.org/10.1016/j.msec.2015.01.071.Suche in Google Scholar

17. Sarasam A. R., Samli A. I., Hess L., Ihnat M. A., Madihally S. V. Macromol. Biosci. 2007, 7, 1160–1167. https://doi.org/10.1002/mabi.2007000015.Suche in Google Scholar

18. Ho M. M. H., Kuo P. Y., Hsieh H. J., Hsien T. Y., Hou L. T., Lai J. Y., Wang D. M. Biomaterials. 2004, 25, 129–138. https://doi.org/10.1016/S0142-9612(03)00483-6.Suche in Google Scholar

19. Zhu H., Ji J., Shen J. Macromol. Rapid Commun. 2002, 23, 819–823. https://doi.org/10.1002/1521-3927(20021001)23:14<819::AID-MARC819<3.0.CO;2-9.10.1002/1521-3927(20021001)23:14<819::AID-MARC819>3.0.CO;2-9Suche in Google Scholar

20. Dong W., Zeng Q., Yin X., Liu H., Lv J., Zhu L. Polym. Compos. 2018, 39, E416–E425. https://doi.org/10.1002/pc.24500.Suche in Google Scholar

21. Ye Z., Xu W., Shen R., Yan Y. J. Biomater. Appl. 2019; 34, 763–777 https://doi.org/10.1177/0885328219873561.Suche in Google Scholar

22. El-Kady A. M., Saad E. A., El-Hady B. M., Farag M. M. Ceram. Int. 2010, 36, 995–1009. https://doi.org/10.1016/j.ceramint.2009.11.012.Suche in Google Scholar

23. Verrier S., Blaker J. J., Maquet V., Hench L. L., Boccaccini A. R. Biomaterials. 2004, 25, 3013–3021. https://doi.org/10.1016/j.biomaterials.2003.09.081.Suche in Google Scholar

24. Adeli H., Zein S. H. S., Tan S. H., Akil H. M., Ahmad A. L. Curr. Nanosci. 2011, 7, 323–332. https://doi.org/10.2174/157341311795542552.Suche in Google Scholar

25. Eryildiz M., Altan M. Polym. Compos. 2019; 41, 757–767. https://doi.org/10.1002/pc.25406.Suche in Google Scholar

26. Ma L., Gao C., Mao Z., Zhou J., Shen J., Hu X., Han C. Biomaterials. 2003, 24, 4833–4841. https://doi.org/10.1016/S0142-9612(03)00374-0.Suche in Google Scholar

27. Willats W. G., McCartney L., Mackie W., Knox J. P. Plant Mol. Biol. 2001, 47, 9–27. https://doi.org/10.1023/A:1010662911148.10.1023/A:1010662911148Suche in Google Scholar

28. Sadeghi M. J. Biomater. Nanobiotechnol. 2011, 2, 36–40. https://doi.org/10.4236/jbnb.2011.21005.Suche in Google Scholar

29. Ninan N., Muthiah M., Park I. K., Kalarikkal N., Elain A., Wong T. W., Thomas S., Grohens Y. Mater. Lett. 2014, 132, 34–37. https://doi.org/10.1016/j.matlet.2014.06.056.Suche in Google Scholar

30. Ninan N., Muthiah M., Park I. K., Elain A., Thomas S., Grohens Y. Carbohydr. Polym. 2013, 98, 877–885. https://doi.org/10.1016/j.carbpol.2013.06.067.Suche in Google Scholar

31. Munarin F., Guerreiro S. G., Grellier M. A., Tanzi M. C., Barbosa M. A., Petrini P., Granja P. L. Biomacromolecules. 2011, 12, 568–577 https://doi.org/10.1021/bm101110x.Suche in Google Scholar

32. Archana D., Upadhyay L., Tewari R. P., Dutta J., Huang Y. B., Dutta P. K. Indian J. Biotechnol. 2013, 12, 475–482. Available from: http://nopr.niscair.res.in/handle/123456789/26232.Suche in Google Scholar

33. Nanda P. K., Swain P., Nayak S. K., Mishra S. S., Jayasankar P., Sahoo S. K. Adv. Anim. Vet. Sci. 2014, 2, 177–182. https://doi.org/10.14737/journal.aavs/2014/2.3.177.182.10.14737/journal.aavs/2014/2.3.177.182Suche in Google Scholar

34. Razak S. I. A., Dahli F. N., Wahab I. F., Abdul Kadir M. R., Muhamad I. I., Yusof A. H., Adeli H. Soft Mater. 2016, 14, 78–86. https://doi.org/10.1080/1539445X.2016.1149078.Suche in Google Scholar

35. Afshar H. A., Ghaee A. Carbohydr. Polym. 2016, 151, 1120–1131. https://doi.org/10.1016/j.carbpol.2016.06.063.Suche in Google Scholar

36. Liu L., Won Y. J., Cooke P. H., Coffin D. R., Fishman M. L., Hicks K. B., Ma P. X. Biomaterials. 2004, 25, 3201–3210. https://doi.org/10.1016/j.biomaterials.2003.10.036.Suche in Google Scholar

37. Sangsen Y., Benjakul S., Oungbho K. 4th Biomedical Engineering International Conference. 2011, 273–278. https://doi.org/10.1109/BMEiCon.2012.6172069.Suche in Google Scholar

38. Loh Q. L., Choong C. Tissue Eng. Part B: Rev. 2013, 19, 485–502. https://doi.org/10.1089/ten.teb.2012.0437.Suche in Google Scholar

39. Lasprilla A. J., Martinez G. A., Hoss B. Chem. Eng. 2011, 24, 985–990. Available from: https://folk.ntnu.no/skoge/prost/proceedings/pres2011-and-icheap10/ICheaP10/310Lasprilla.pdf.Suche in Google Scholar

40. Jackson C. L., Dreaden T. M., Theobald L. K., Tran N. M., Beal T. L., Eid M., Gao M. Y., Shirley R. B., Stoffel M. T., Kumar M. V., Mohnen D. Glycobiology. 2007, 17, 805–819. https://doi.org/10.1093/glycob/cwm054.Suche in Google Scholar

41. Gaona L. A., Ribelles J. G., Perilla J. E., Lebourg M. Polym. Degrad. Stabil. 2012, 97, 1621–1632. https://doi.org/10.1016/j.polymdegradstab.2012.06.031.Suche in Google Scholar

42. Bohari S. P., Hukins D. W., Grover L. M. Bio-medi. Mater Eng. 2011, 21, 159–170. https://doi.org/10.3233/BME-2011-0665.Suche in Google Scholar

Received: 2019-12-12
Accepted: 2020-03-15
Published Online: 2020-04-30
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0377/pdf?lang=de
Button zum nach oben scrollen