Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
-
Mohd Syahir Anwar Hamzah
, Saiful Izwan Abd Razak, Mohammed Rafiq Abdul Kadir
, Siti Pauliena Mohd Bohari , Nadirul Hasraf Mat Nayan und Joseph Sahaya Thangaraj Anand
Abstract
This work reports the fabrication and characterizations of porous scaffold made up of polylactic acid (PLA) with the inclusion of pectin (1, 3, 5, 7, 9, 11 wt%) for potential tissue engineering material. The composite scaffold was prepared using a facile method of freeze extraction. Based on the physical evaluations, the scaffold was suggested to be optimum at 5 wt% of pectin loading. Water contact angle of the scaffold was significantly reduced to 46.5o with the inclusion of 5 wt% of pectin. Morphological and topographic of the PLA scaffold revealed that the pectin induced more porous structure and its surface became rougher which was suitable for cell attachment and proliferation. In vitro studies of the PLA/pectin composite scaffold using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidelt (MTT) assay revealed good biocompatibility whereas Live-Dead kit assay resulted in 91% cell viability after 7 days of incubation.
Funding source: Universiti Teknologi Malaysia
Award Identifier / Grant number: 03G83, 04G53
Research funding: Financial support from the Universiti Teknologi Malaysia grant number 04G53 and 03G83 are gratefully acknowledged.
References
1. Grémare A., Guduric V., Bareille R., Heroguez V., Latour S., L'heureux N., Fricain J. C., Catros S., Le Nihouannen D. J. Biomed. Mater. Res. Part A. 2018, 106, 887–894. https://doi.org/10.1002/jbm.a.36289.Suche in Google Scholar
2. Moffat K. L., Goon K., Moutos F. T., Estes B. T., Oswald S. J., Zhao X., Guilak F. Macromol. Biosci. 2018, 18, 1800140. https://doi.org/10.1002/mabi.201800140.Suche in Google Scholar
3. Zhang C., Zhai T., Turng L. S. J. Polym. Eng. 2018, 38, 409–417. https://doi.org/10.1515/polyeng-2017-0194.Suche in Google Scholar
4. Afshar H. A., Ghaee A. Carbohydr. Polym. 2016, 151, 1120–1131. https://doi.org/10.1016/S0928-4931(01)00338-1.Suche in Google Scholar
5. Ghorbani F., Moradi L., Shadmehr M. B., Bonakdar S., Droodinia A., Safshekan F. Mater. Sci. Eng.: C. 2017, 81, 74–83. https://doi.org/10.1016/j.msec.2017.04.150.Suche in Google Scholar
6. Da L., Gong M., Chen A., Zhang Y., Huang Y., Guo Z., Li S., Li-Ling J., Zhang L., Xie H. Acta Biomater. 2017, 59, 45–57. https://doi.org/10.1016/j.actbio.2017.05.041.Suche in Google Scholar
7. Lin H. Y., Chen H. H., Chang S. H., Ni T. S. J. Biomater. Sci. Polym. Ed. 2013, 24, 470–484. https://doi.org/10.1080/09205063.2012.693047.Suche in Google Scholar
8. Wang J., Nor Hidayah Z., Razak S. I. A., Kadir M. R., Nayan N. H., Li Y., Amin K. A. Compos. Interfac. 2019, 26, 465–478. https://doi.org/10.1080/09276440.2018.1508266.Suche in Google Scholar
9. Thauvin C., Schwarz B., Delie F., Allémann E. Int. J. Pharm. 2018, 548, 771–777. https://doi.org/10.1016/j.ijpharm.2017.11.001.Suche in Google Scholar
10. Abudula T., Saeed U., Memic A., Gauthaman K., Hussain M. A., Al-Turaif H. J. Polym. Res. 2019, 26, 110. https://doi.org/10.1007/s10965-019-1772-y.Suche in Google Scholar
11. Wang L., Wang D., Zhou Y., Zhang Y., Li Q., Shen C. Polym. Adv. Technol. 2019, 30, 2539–2548. https://doi.org/10.1002/pat.4701.Suche in Google Scholar
12. Suzuki A., Nagata F., Inagaki M., Kato K. Trans. Mater. Res. Soc. Jpn. 2018, 43, 271–274. https://doi.org/10.14723/tmrsj.43.271.Suche in Google Scholar
13. Bhaskar B., Owen R., Bahmaee H., Wally Z., Sreenivasa Rao P., Reilly G. C. J. Biomed. Mater. Res. Part A. 2018, 106, 1334–1340. https://doi.org/10.1002/jbm.a.36336.Suche in Google Scholar
14. Teixeira B. N., Aprile P., Mendonça R. H., Kelly D. J., Thiré R. M. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2019, 107, 37–49. https://doi.org/10.1002/jbm.b.34093.Suche in Google Scholar
15. Budyanto L., Goh Y. Q., Ooi C. P. J. Mater. Sci.: Mater. Med. 2009, 20, 105–111. https://doi.org/10.1007/s10856-008-3545-8.Suche in Google Scholar
16. Ghaleh H., Abbasi F., Alizadeh M., Khoshfetrat A. B. Mater. Sci. Eng.: C. 2015, 49, 807–815. https://doi.org/10.1016/j.msec.2015.01.071.Suche in Google Scholar
17. Sarasam A. R., Samli A. I., Hess L., Ihnat M. A., Madihally S. V. Macromol. Biosci. 2007, 7, 1160–1167. https://doi.org/10.1002/mabi.2007000015.Suche in Google Scholar
18. Ho M. M. H., Kuo P. Y., Hsieh H. J., Hsien T. Y., Hou L. T., Lai J. Y., Wang D. M. Biomaterials. 2004, 25, 129–138. https://doi.org/10.1016/S0142-9612(03)00483-6.Suche in Google Scholar
19. Zhu H., Ji J., Shen J. Macromol. Rapid Commun. 2002, 23, 819–823. https://doi.org/10.1002/1521-3927(20021001)23:14<819::AID-MARC819<3.0.CO;2-9.10.1002/1521-3927(20021001)23:14<819::AID-MARC819>3.0.CO;2-9Suche in Google Scholar
20. Dong W., Zeng Q., Yin X., Liu H., Lv J., Zhu L. Polym. Compos. 2018, 39, E416–E425. https://doi.org/10.1002/pc.24500.Suche in Google Scholar
21. Ye Z., Xu W., Shen R., Yan Y. J. Biomater. Appl. 2019; 34, 763–777 https://doi.org/10.1177/0885328219873561.Suche in Google Scholar
22. El-Kady A. M., Saad E. A., El-Hady B. M., Farag M. M. Ceram. Int. 2010, 36, 995–1009. https://doi.org/10.1016/j.ceramint.2009.11.012.Suche in Google Scholar
23. Verrier S., Blaker J. J., Maquet V., Hench L. L., Boccaccini A. R. Biomaterials. 2004, 25, 3013–3021. https://doi.org/10.1016/j.biomaterials.2003.09.081.Suche in Google Scholar
24. Adeli H., Zein S. H. S., Tan S. H., Akil H. M., Ahmad A. L. Curr. Nanosci. 2011, 7, 323–332. https://doi.org/10.2174/157341311795542552.Suche in Google Scholar
25. Eryildiz M., Altan M. Polym. Compos. 2019; 41, 757–767. https://doi.org/10.1002/pc.25406.Suche in Google Scholar
26. Ma L., Gao C., Mao Z., Zhou J., Shen J., Hu X., Han C. Biomaterials. 2003, 24, 4833–4841. https://doi.org/10.1016/S0142-9612(03)00374-0.Suche in Google Scholar
27. Willats W. G., McCartney L., Mackie W., Knox J. P. Plant Mol. Biol. 2001, 47, 9–27. https://doi.org/10.1023/A:1010662911148.10.1023/A:1010662911148Suche in Google Scholar
28. Sadeghi M. J. Biomater. Nanobiotechnol. 2011, 2, 36–40. https://doi.org/10.4236/jbnb.2011.21005.Suche in Google Scholar
29. Ninan N., Muthiah M., Park I. K., Kalarikkal N., Elain A., Wong T. W., Thomas S., Grohens Y. Mater. Lett. 2014, 132, 34–37. https://doi.org/10.1016/j.matlet.2014.06.056.Suche in Google Scholar
30. Ninan N., Muthiah M., Park I. K., Elain A., Thomas S., Grohens Y. Carbohydr. Polym. 2013, 98, 877–885. https://doi.org/10.1016/j.carbpol.2013.06.067.Suche in Google Scholar
31. Munarin F., Guerreiro S. G., Grellier M. A., Tanzi M. C., Barbosa M. A., Petrini P., Granja P. L. Biomacromolecules. 2011, 12, 568–577 https://doi.org/10.1021/bm101110x.Suche in Google Scholar
32. Archana D., Upadhyay L., Tewari R. P., Dutta J., Huang Y. B., Dutta P. K. Indian J. Biotechnol. 2013, 12, 475–482. Available from: http://nopr.niscair.res.in/handle/123456789/26232.Suche in Google Scholar
33. Nanda P. K., Swain P., Nayak S. K., Mishra S. S., Jayasankar P., Sahoo S. K. Adv. Anim. Vet. Sci. 2014, 2, 177–182. https://doi.org/10.14737/journal.aavs/2014/2.3.177.182.10.14737/journal.aavs/2014/2.3.177.182Suche in Google Scholar
34. Razak S. I. A., Dahli F. N., Wahab I. F., Abdul Kadir M. R., Muhamad I. I., Yusof A. H., Adeli H. Soft Mater. 2016, 14, 78–86. https://doi.org/10.1080/1539445X.2016.1149078.Suche in Google Scholar
35. Afshar H. A., Ghaee A. Carbohydr. Polym. 2016, 151, 1120–1131. https://doi.org/10.1016/j.carbpol.2016.06.063.Suche in Google Scholar
36. Liu L., Won Y. J., Cooke P. H., Coffin D. R., Fishman M. L., Hicks K. B., Ma P. X. Biomaterials. 2004, 25, 3201–3210. https://doi.org/10.1016/j.biomaterials.2003.10.036.Suche in Google Scholar
37. Sangsen Y., Benjakul S., Oungbho K. 4th Biomedical Engineering International Conference. 2011, 273–278. https://doi.org/10.1109/BMEiCon.2012.6172069.Suche in Google Scholar
38. Loh Q. L., Choong C. Tissue Eng. Part B: Rev. 2013, 19, 485–502. https://doi.org/10.1089/ten.teb.2012.0437.Suche in Google Scholar
39. Lasprilla A. J., Martinez G. A., Hoss B. Chem. Eng. 2011, 24, 985–990. Available from: https://folk.ntnu.no/skoge/prost/proceedings/pres2011-and-icheap10/ICheaP10/310Lasprilla.pdf.Suche in Google Scholar
40. Jackson C. L., Dreaden T. M., Theobald L. K., Tran N. M., Beal T. L., Eid M., Gao M. Y., Shirley R. B., Stoffel M. T., Kumar M. V., Mohnen D. Glycobiology. 2007, 17, 805–819. https://doi.org/10.1093/glycob/cwm054.Suche in Google Scholar
41. Gaona L. A., Ribelles J. G., Perilla J. E., Lebourg M. Polym. Degrad. Stabil. 2012, 97, 1621–1632. https://doi.org/10.1016/j.polymdegradstab.2012.06.031.Suche in Google Scholar
42. Bohari S. P., Hukins D. W., Grover L. M. Bio-medi. Mater Eng. 2011, 21, 159–170. https://doi.org/10.3233/BME-2011-0665.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs