First-principles modeling of structural and RedOx processes in high-voltage Mn-based cathodes for sodium-ion batteries
Abstract
Sodium-ion batteries are increasingly regarded as a sustainable alternative to lithium-ion technology for large-scale energy storage, but their development remains limited by the lack of durable high-energy cathodes. Among the most promising candidates, P2–Mn-based layered oxides combine high theoretical capacity with structural versatility, yet their performance is constrained by two degradation pathways: (i) the irreversible participation of lattice oxygen in the redox process and (ii) voltage-driven solid-state phase transitions. This research article synthesizes our recent ab initio investigations aimed at disentangling the atomistic origins of these processes occurring in the high-voltage regime. We show that Mn deficiency activates oxygen redox but also promotes O2 release, whereas Fe and Ru doping strengthen TM–O covalency, enabling reversible anionic redox. In parallel, we identify cooperative Jahn–Teller distortions and Na+/vacancy reorganization as the driving forces of high-voltage phase transitions and propose simple geometric descriptors as predictive tools for structural stability. Together, these insights help to establish quantum-based design guidelines for layered sodium cathodes: reinforce TM–O covalency, suppress oxygen evolution, and mitigate phase instabilities. By combining first-principles modeling with targeted compositional design, we pave the way toward the accelerated discovery of sustainable, cobalt-free, and high-energy cathodes for next-generation sodium-ion batteries.
Acknowledgments
This study was carried out within the NEST–Network for Energy Sustainable Transition and received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)–MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3). This manuscript reflects only the authors’ views and opinions; neither the European Union nor the European Commission can be considered responsible for them. Authors also acknowledge funding from the ORANGEES project (Italian Ministry of Environment and Energy Security, Research of the National Electric System PTR 2019–2021). The computing resources and the related technical support used for this work have been provided by the CRESCO/ENEA-GRID High Performance Computing infrastructure and its staff. 113 The CRESCO/ENEAGRID High Performance Computing infrastructure is funded by ENEA, Italy, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development and by Italian and European research programs; see https://www.cresco.enea.it for information.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Abraham, K. M. ACS Energy Lett. 2020, 5 (11), 3544–3547. https://doi.org/10.1021/acsenergylett.0c02181.Suche in Google Scholar
2. Delmas, C. Adv. Energy Mater. 2018, 8 (17), 1703137. https://doi.org/10.1002/aenm.201703137.Suche in Google Scholar
3. Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energy Environ. Sci. 2013, 6 (8), 2265. https://doi.org/10.1039/c3ee40871j.Suche in Google Scholar
4. Tarascon, J.-M. Nat. Chem. 2010, 2 (6), 510. https://doi.org/10.1038/nchem.680.Suche in Google Scholar PubMed
5. Kurzweil, P. J. Power Sources 2010, 195 (14), 4424–4434. https://doi.org/10.1016/j.jpowsour.2009.12.126.Suche in Google Scholar
6. Ponrouch, A.; Palacín, M. R. Philos. Trans. R. Soc. A. 2019, 377 (2152), 20180297. https://doi.org/10.1098/rsta.2018.0297.Suche in Google Scholar PubMed PubMed Central
7. Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Chem. Soc. Rev. 2017, 46 (12), 3529–3614. https://doi.org/10.1039/c6cs00776g.Suche in Google Scholar PubMed
8. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energy Environ. Sci. 2012, 5 (3), 5884. https://doi.org/10.1039/c2ee02781j.Suche in Google Scholar
9. Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D. Electrochem. Soc. Interface 2010, 19 (3), 49. https://doi.org/10.1149/2.f05103if.Suche in Google Scholar
10. Liu, T.; Zhang, Y.; Jiang, Z.; Zeng, X.; Ji, J.; Li, Z.; Gao, X.; Sun, M.; Lin, Z.; Ling, M.; Zheng, J.; Liang, C. Energy Environ. Sci. 2019, 12 (5), 1512–1533.10.1039/C8EE03727BSuche in Google Scholar
11. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. J. Power Sources 2015, 282, 299–322. https://doi.org/10.1016/j.jpowsour.2015.02.054.Suche in Google Scholar
12. Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J. T.; Nam, K.-W.; Jung, H.-G.; Chung, K. Y. Energy Storage Mater. 2020, 25, 224–250. https://doi.org/10.1016/j.ensm.2019.10.011.Suche in Google Scholar
13. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Adv. Energy Mater. 2018, 8 (16), 1800079. https://doi.org/10.1002/aenm.201800079.Suche in Google Scholar
14. Huang, Y.; Zheng, Y.; Li, X.; Adams, F.; Luo, W.; Huang, Y.; Hu, L. ACS Energy Lett. 2018, 3 (7), 1604–1612. https://doi.org/10.1021/acsenergylett.8b00609.Suche in Google Scholar
15. Li, L.; Zheng, Y.; Zhang, S.; Yang, J.; Shao, Z.; Guo, Z. Energy Environ. Sci. 2018, 11 (9), 2310–2340. https://doi.org/10.1039/c8ee01023d.Suche in Google Scholar
16. Massaro, A.; Pecoraro, A.; Muñoz-García, A. B.; Pavone, M. J. Phys. Chem. C 2021, 125 (4), 2276–2286.10.1021/acs.jpcc.0c10107Suche in Google Scholar PubMed PubMed Central
17. Barik, G.; Pal, S. J. Phys. Chem. C 2019, 123 (36), 21852–21865. https://doi.org/10.1021/acs.jpcc.9b04128.Suche in Google Scholar
18. Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q.-H. Adv. Mater. 2023, 35 (31), 2212186. https://doi.org/10.1002/adma.202212186.Suche in Google Scholar PubMed
19. Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.; Fleischauer, M. D.; Dahn, J. R. J. Electrochem. Soc. 2003, 150 (11), A1457. https://doi.org/10.1149/1.1613668.Suche in Google Scholar
20. Fasulo, F.; Massaro, A.; Muñoz-García, A. B.; Pavone, M. J. Mater. Res. 2022, 37 (19), 3216–3226.10.1557/s43578-022-00579-1Suche in Google Scholar
21. Brugnetti, G.; Triolo, C.; Massaro, A.; Ostroman, I.; Pianta, N.; Ferrara, C.; Sheptyakov, D.; Muñoz-García, A. B.; Pavone, M.; Santangelo, S.; Ruffo, R. Chem. Mater. 2023, 35 (20), 8440–8454. https://doi.org/10.1021/acs.chemmater.3c01196.Suche in Google Scholar PubMed PubMed Central
22. Ke, M.; Wan, M.; Dong, W.; Wei, T.; Dou, H.; Zhang, X. Next Mater. 2025, 6, 100480. https://doi.org/10.1016/j.nxmate.2024.100480.Suche in Google Scholar
23. Wang, P.-F.; You, Y.; Yin, Y.-X.; Guo, Y.-G. Adv. Energy Mater. 2018, 8 (8), 1701912. https://doi.org/10.1002/aenm.201701912.Suche in Google Scholar
24. Delmas, C.; Fouassier, C.; Hagenmuller, P. Physica B+C 1980, 99 (1), 81–85. https://doi.org/10.1016/0378-4363(80)90214-4.Suche in Google Scholar
25. Delmas, C.; Braconnier, J.-J.; Fouassier, C.; Hagenmuller, P. Solid State Ionics 1981, 3–4, 165–169. https://doi.org/10.1016/0167-2738(81)90076-x.Suche in Google Scholar
26. Massaro, A.; Fasulo, F.; Pecoraro, A.; Langella, A.; Muñoz-García, A. B.; Pavone, M. Phys. Chem. Chem. Phys. 2023, 25 (28), 18623–18641. https://doi.org/10.1039/d3cp01201h.Suche in Google Scholar PubMed
27. Hou, P.; Li, F.; Wang, Y.; Yin, J.; Xu, X. J. Mater. Chem. A 2019, 7 (9), 4705–4713. https://doi.org/10.1039/c8ta10980j.Suche in Google Scholar
28. Fang, C.; Huang, Y.; Zhang, W.; Han, J.; Deng, Z.; Cao, Y.; Yang, H. Adv. Energy Mater. 2016, 6 (5), 1501727. https://doi.org/10.1002/aenm.201501727.Suche in Google Scholar
29. Bai, X.; Sathiya, M.; Mendoza-Sánchez, B.; Iadecola, A.; Vergnet, J.; Dedryvère, R.; Saubanère, M.; Abakumov, A. M.; Rozier, P.; Tarascon, J.-M. Adv. Energy Mater. 2018, 8 (32), 1802379.10.1002/aenm.201802379Suche in Google Scholar
30. Grimaud, A.; Hong, W. T.; Shao-Horn, Y.; Tarascon, J.-M. Nat. Mater. 2016, 15 (2), 121–126. https://doi.org/10.1038/nmat4551.Suche in Google Scholar PubMed
31. Edelman, D. A.; Eum, D.; Chueh, W. C. Nat. Sustain. 2024, 7 (3), 234–235. https://doi.org/10.1038/s41893-024-01297-8.Suche in Google Scholar
32. Larcher, D.; Tarascon, J.-M. Nat. Chem. 2015, 7 (1), 19–29. https://doi.org/10.1038/nchem.2085.Suche in Google Scholar PubMed
33. Huang, J.; Xu, L.; Ye, D.; Wu, W.; Qiu, S.; Tang, Z.; Wu, X. J. Alloys Compd. 2024, 976, 173397. https://doi.org/10.1016/j.jallcom.2023.173397.Suche in Google Scholar
34. Wang, C.; Liu, L.; Zhao, S.; Liu, Y.; Yang, Y.; Yu, H.; Lee, S.; Lee, G.-H.; Kang, Y.-M.; Liu, R.; Li, F.; Chen, J. Nat. Commun. 2021, 12 (1), 2256. https://doi.org/10.1038/s41467-021-22523-3.Suche in Google Scholar PubMed PubMed Central
35. Massaro, A.; Muñoz-García, A. B.; Prosini, P. P.; Gerbaldi, C.; Pavone, M. ACS Energy Lett. 2021, 6 (7), 2470–2480.10.1021/acsenergylett.1c01020Suche in Google Scholar
36. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148 (11), A1225. https://doi.org/10.1149/1.1407247.Suche in Google Scholar
37. Wang, H.; Yang, B.; Liao, X.-Z.; Xu, J.; Yang, D.; He, Y.-S.; Ma, Z.-F. Electrochim. Acta 2013, 113, 200–204. https://doi.org/10.1016/j.electacta.2013.09.098.Suche in Google Scholar
38. Ma, C.; Alvarado, J.; Xu, J.; Clément, R. J.; Kodur, M.; Tong, W.; Grey, C. P.; Meng, Y. S. J. Am. Chem. Soc. 2017, 139 (13), 4835–4845. https://doi.org/10.1021/jacs.7b00164.Suche in Google Scholar PubMed
39. Li, Y.; Mazzio, K. A.; Yaqoob, N.; Sun, Y.; Freytag, A. I.; Wong, D.; Schulz, C.; Baran, V.; Mendez, A. S. J.; Schuck, G.; Zając, M.; Kaghazchi, P.; Adelhelm, P. Adv. Mater. 2024, 36 (18), 2309842. https://doi.org/10.1002/adma.202309842.Suche in Google Scholar PubMed
40. de la Llave, E.; Talaie, E.; Levi, E.; Nayak, P. K.; Dixit, M.; Rao, P. T.; Hartmann, P.; Chesneau, F.; Major, D. T.; Greenstein, M.; Aurbach, D.; Nazar, L. F. Chem. Mater. 2016, 28 (24), 9064–9076. https://doi.org/10.1021/acs.chemmater.6b04078.Suche in Google Scholar
41. Jiang, K.; Zhang, X.; Li, H.; Zhang, X.; He, P.; Guo, S.; Zhou, H. ACS Appl. Mater. Interfaces 2019, 11 (16), 14848–14853. https://doi.org/10.1021/acsami.9b03326.Suche in Google Scholar PubMed
42. Li, L.; Su, G.; Lu, C.; Ma, X.; Ma, L.; Wang, H.; Cao, Z. Chem. Eng. J. 2022, 446, 136923. https://doi.org/10.1016/j.cej.2022.136923.Suche in Google Scholar
43. Langella, A.; Massaro, A.; Muñoz-García, A. B.; Pavone, M. Chem. Mater. 2024, 36 (5), 2370–2379.10.1021/acs.chemmater.3c02981Suche in Google Scholar
44. Massaro, A.; Langella, A.; Gerbaldi, C.; Elia, G. A.; Muñoz-García, A. B.; Pavone, M. ACS Appl. Energy Mater. 2022, 5 (9), 10721–10730. https://doi.org/10.1021/acsaem.2c01455.Suche in Google Scholar
45. Massaro, A.; Langella, A.; Muñoz-García, A. B.; Pavone, M. J. Am. Ceram. Soc. 2023, 106 (1), 109–119.10.1111/jace.18494Suche in Google Scholar
46. Langella, A.; Massaro, A.; Muñoz-García, A. B.; Pavone, M. ACS Energy Lett. 2025, 10 (3), 1089–1098.10.1021/acsenergylett.4c03335Suche in Google Scholar PubMed PubMed Central
47. Yao, Z.; Chan, M. K. Y.; Wolverton, C. Chem. Mater. 2022, 34 (10), 4536–4547. https://doi.org/10.1021/acs.chemmater.2c00322.Suche in Google Scholar
48. Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M. Nat. Mater. 2013, 12 (9), 827–835. https://doi.org/10.1038/nmat3699.Suche in Google Scholar PubMed
49. Assat, G.; Tarascon, J.-M. Nat. Energy 2018, 3 (5), 373–386. https://doi.org/10.1038/s41560-018-0097-0.Suche in Google Scholar
50. Soundharrajan, V.; Alfaruqi, M. H.; Alfaza, G.; Lee, J.; Lee, S.; Park, S.; Nithiananth, S.; Pham, D. T.; Hwang, J.-Y.; Kim, J. J. Mater. Chem. A 2023, 11 (28), 15518–15531. https://doi.org/10.1039/d3ta02291a.Suche in Google Scholar
51. Kim, Y.; Oh, G.; Lee, J.; Baek, J.; Alfaza, G.; Lee, S.; Mathew, V.; Kansara, S.; Hwang, J.-Y.; Kim, J. ACS Appl. Mater. Interfaces 2024, 16 (5), 5896–5904. https://doi.org/10.1021/acsami.3c17166.Suche in Google Scholar PubMed
52. Minnetti, L.; Paparoni, F.; Zitolo, A.; Silly, M. G.; Torretti, E.; Rezvani, J.; Nobili, F. Acta Mater. 2025, 301, 121518. https://doi.org/10.1016/j.actamat.2025.121518.Suche in Google Scholar
53. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54 (16), 11169–11186. https://doi.org/10.1103/physrevb.54.11169.Suche in Google Scholar PubMed
54. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59 (3), 1758–1775. https://doi.org/10.1103/physrevb.59.1758.Suche in Google Scholar
55. Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953–17979. https://doi.org/10.1103/physrevb.50.17953.Suche in Google Scholar PubMed
56. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar
57. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133–A1138. https://doi.org/10.1103/physrev.140.a1133.Suche in Google Scholar
58. Kim, H.; Koo, S.; Lee, J.; Lee, J.; Park, S.; Cho, M.; Kim, D. Energy Storage Mater. 2022, 45, 432–441. https://doi.org/10.1016/j.ensm.2021.12.005.Suche in Google Scholar
59. Shi, X.-H.; Wang, Y.-P.; Cao, X.; Wu, S.; Hou, Z.; Zhu, Z. ACS Omega 2022, 7 (17), 14875–14886. https://doi.org/10.1021/acsomega.2c00375.Suche in Google Scholar PubMed PubMed Central
60. Vergnet, J.; Saubanère, M.; Doublet, M.-L.; Tarascon, J.-M. Joule 2020, 4 (2), 420–434.10.1016/j.joule.2019.12.003Suche in Google Scholar
61. Ben Yahia, M.; Vergnet, J.; Saubanère, M.; Doublet, M.-L. Nat. Mater. 2019, 18 (5), 496–502. https://doi.org/10.1038/s41563-019-0318-3.Suche in Google Scholar PubMed
62. Fabris, S.; De Gironcoli, S.; Baroni, S.; Vicario, G.; Balducci, G. Phys. Rev. B 2005, 71 (4), 041102. https://doi.org/10.1103/physrevb.71.041102.Suche in Google Scholar
63. Pacchioni, G. J. Chem. Phys. 2008, 128 (18), 182505. https://doi.org/10.1063/1.2819245.Suche in Google Scholar PubMed
64. Wang, L.; Maxisch, T.; Ceder, G. Phys. Rev. B 2006, 73 (19), 195107. https://doi.org/10.1103/physrevb.73.195107.Suche in Google Scholar
65. Mosey, N. J.; Liao, P.; Carter, E. A. J. Chem. Phys. 2008, 129 (1), 014103. https://doi.org/10.1063/1.2943142.Suche in Google Scholar PubMed
66. Verma, P.; Truhlar, D. G. Theor. Chem. Acc. 2016, 135 (8), 182. https://doi.org/10.1007/s00214-016-1927-4.Suche in Google Scholar
67. Franchini, C.; Bayer, V.; Podloucky, R.; Paier, J.; Kresse, G. Phys. Rev. B 2005, 72 (4), 045132. https://doi.org/10.1103/physrevb.72.045132.Suche in Google Scholar
68. Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22 (3), 587–603. https://doi.org/10.1021/cm901452z.Suche in Google Scholar
69. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.Suche in Google Scholar PubMed
70. Pecoraro, A.; Schiavo, E.; Maddalena, P.; Muñoz-García, A. B.; Pavone, M. J. Comput. Chem. 2020, 41 (22), 1946–1955. https://doi.org/10.1002/jcc.26364.Suche in Google Scholar PubMed
71. Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. J. Comput. Chem. 2009, 30 (6), 934–939. https://doi.org/10.1002/jcc.21112.Suche in Google Scholar PubMed
72. Sannino, G. V.; Pecoraro, A.; Maddalena, P.; Bruno, A.; Veneri, P. D.; Pavone, M.; Muñoz-García, A. B. Sustain. Energy Fuels 2023, 7 (19), 4855–4863. https://doi.org/10.1039/d3se00362k.Suche in Google Scholar
73. Pecoraro, A.; Fasulo, F.; Pavone, M.; Muñoz-García, A. B. Chem. Commun. 2023, 59 (34), 5055–5058. https://doi.org/10.1039/d3cc00960b.Suche in Google Scholar PubMed
74. Coppola, C.; Pecoraro, A.; Muñoz-García, A. B.; Infantino, R.; Dessì, A.; Reginato, G.; Basosi, R.; Sinicropi, A.; Pavone, M. Phys. Chem. Chem. Phys. 2022, 24 (24), 14993–15002.10.1039/D2CP01270GSuche in Google Scholar
75. Pecoraro, A.; Maddalena, P.; Pavone, M.; Muñoz García, A. B. Materials 2022, 15 (16), 5703. https://doi.org/10.3390/ma15165703.Suche in Google Scholar PubMed PubMed Central
76. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13 (12), 5188–5192. https://doi.org/10.1103/physrevb.13.5188.Suche in Google Scholar
77. Zunger, A.; Wei, S.-H.; Ferreira, L. G.; Bernard, J. E. Phys. Rev. Lett. 1990, 65 (3), 353–356. https://doi.org/10.1103/physrevlett.65.353.Suche in Google Scholar
78. Gehringer, D.; Friák, M.; Holec, D. Comput. Phys. Commun. 2023, 286, 108664.10.1016/j.cpc.2023.108664Suche in Google Scholar
79. Nagle-Cocco, L. A. V.; Dutton, S. E. J. Appl. Crystallogr. 2024, 57 (1), 20–33. https://doi.org/10.1107/s1600576723009925.Suche in Google Scholar
80. Therrien, F.; Graf, P.; Stevanović, V. J. Chem. Phys. 2020, 152 (7), 074106. https://doi.org/10.1063/1.5131527.Suche in Google Scholar PubMed
81. Qian, G.-R.; Dong, X.; Zhou, X.-F.; Tian, Y.; Oganov, A. R.; Wang, H.-T. Comput. Phys. Commun. 2013, 184 (9), 2111–2118. https://doi.org/10.1016/j.cpc.2013.04.004.Suche in Google Scholar
82. Glass, C. W.; Oganov, A. R.; Hansen, N. Comput. Phys. Commun. 2006, 175 (11), 713–720. https://doi.org/10.1016/j.cpc.2006.07.020.Suche in Google Scholar
83. Goodenough, J. B. Annu. Rev. Mater. Sci. 1998, 28 (1), 1–27. https://doi.org/10.1146/annurev.matsci.28.1.1.Suche in Google Scholar
84. Sturge, M. D. Solid State Physics, Vol. 20; Academic Press: New York and London, 1968; pp 91–211.10.1016/S0081-1947(08)60218-0Suche in Google Scholar
85. Jung, H.; Kim, J.; Kim, S. J. Appl. Phys. 2022, 132 (5), 055101. https://doi.org/10.1063/5.0086903.Suche in Google Scholar
86. Gehring, G. A.; Gehring, K. A. Rep. Prog. Phys. 1975, 38 (1), 1–89. https://doi.org/10.1088/0034-4885/38/1/001.Suche in Google Scholar
87. Wang, P.-F.; Jin, T.; Zhang, J.; Wang, Q.-C.; Ji, X.; Cui, C.; Piao, N.; Liu, S.; Xu, J.; Yang, X.-Q.; Wang, C. Nano Energy 2020, 77, 105167. https://doi.org/10.1016/j.nanoen.2020.105167.Suche in Google Scholar
88. Manzi, J.; Paolone, A.; Palumbo, O.; Corona, D.; Massaro, A.; Cavaliere, R.; Muñoz-García, A. B.; Trequattrini, F.; Pavone, M.; Brutti, S. Energies 2021, 14 (5), 1230. https://doi.org/10.3390/en14051230.Suche in Google Scholar
89. Li, X.; Ma, X.; Su, D.; Liu, L.; Chisnell, R.; Ong, S. P.; Chen, H.; Toumar, A.; Idrobo, J.-C.; Lei, Y.; Bai, J.; Wang, F.; Lynn, J. W.; Lee, Y. S.; Ceder, G. Nat. Mater. 2014, 13 (6), 586–592. https://doi.org/10.1038/nmat3964.Suche in Google Scholar PubMed
90. Mori, S.; Chen, C. H.; Cheong, S.-W. Nature 1998, 392 (6675), 473–476. https://doi.org/10.1038/33105.Suche in Google Scholar
91. Margadonna, S.; Karotsis, G. J. Am. Chem. Soc. 2006, 128 (51), 16436–16437. https://doi.org/10.1021/ja0669272.Suche in Google Scholar PubMed
92. Raveau, B.; Hervieu, M.; Maignan, A.; Martin, C. J. Mater. Chem. 2001, 11 (1), 29–36. https://doi.org/10.1039/b003243n.Suche in Google Scholar
93. Massaro, A.; Fasulo, F.; Langella, A.; Muñoz-Garcia, A. B.; Pavone, M. Computational Design of Battery Materials; Hanaor, D. A. H., Ed.; Springer International Publishing: Cham, 2024; pp. 367–401.10.1007/978-3-031-47303-6_13Suche in Google Scholar
94. Wang, P.-F.; You, Y.; Yin, Y.-X.; Wang, Y.-S.; Wan, L.-J.; Gu, L.; Guo, Y.-G. Angew. Chem. 2016, 128 (26), 7571–7575. https://doi.org/10.1002/ange.201602202.Suche in Google Scholar
95. Massaro, A.; Lingua, G.; Bozza, F.; Piovano, A.; Prosini, P. P.; Muñoz-García, A. B.; Pavone, M.; Gerbaldi, C. Chem. Mater. 2024, 36 (14), 7046–7055. https://doi.org/10.1021/acs.chemmater.4c01311.Suche in Google Scholar PubMed PubMed Central
96. Saubanère, M.; McCalla, E.; Tarascon, J.-M.; Doublet, M.-L. Energy Environ. Sci. 2016, 9 (3), 984–991. https://doi.org/10.1039/c5ee03048j.Suche in Google Scholar
97. Dietrich, H. Angew. Chem. 1961, 73 (14), 511–512. https://doi.org/10.1002/ange.19610731425.Suche in Google Scholar
98. Cramer, C. J.; Tolman, W. B.; Theopold, K. H.; Rheingold, A. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (7), 3635–3640. https://doi.org/10.1073/pnas.0535926100.Suche in Google Scholar PubMed PubMed Central
99. Zhang, Y.; Wu, M.; Ma, J.; Wei, G.; Ling, Y.; Zhang, R.; Huang, Y. ACS Cent. Sci. 2020, 6 (2), 232–240. https://doi.org/10.1021/acscentsci.9b01166.Suche in Google Scholar PubMed PubMed Central
100. Shen, Q.; Liu, Y.; Zhao, X.; Jin, J.; Wang, Y.; Li, S.; Li, P.; Qu, X.; Jiao, L. Adv. Funct. Mater. 2021, 31 (51), 2106923. https://doi.org/10.1002/adfm.202106923.Suche in Google Scholar
101. Wang, Q.; Jiang, K.; Feng, Y.; Chu, S.; Zhang, X.; Wang, P.; Guo, S.; Zhou, H. ACS Appl. Mater. Interfaces 2020, 12 (35), 39056–39062. https://doi.org/10.1021/acsami.0c09082.Suche in Google Scholar PubMed
102. Yu, Y.; Karayaylali, P.; Nowak, S. H.; Giordano, L.; Gauthier, M.; Hong, W.; Kou, R.; Li, Q.; Vinson, J.; Kroll, T.; Sokaras, D.; Sun, C.-J.; Charles, N.; Maglia, F.; Jung, R.; Shao-Horn, Y. Chem. Mater. 2019, 31 (19), 7864–7876. https://doi.org/10.1021/acs.chemmater.9b01821.Suche in Google Scholar PubMed PubMed Central
103. Kiziltas-Yavuz, N.; Bhaskar, A.; Dixon, D.; Yavuz, M.; Nikolowski, K.; Lu, L.; Eichel, R.-A.; Ehrenberg, H. J. Power Sources 2014, 267, 533–541. https://doi.org/10.1016/j.jpowsour.2014.05.110.Suche in Google Scholar
104. Charles, N.; Yu, Y.; Giordano, L.; Jung, R.; Maglia, F.; Shao-Horn, Y. Chem. Mater. 2020, 32 (13), 5502–5514. https://doi.org/10.1021/acs.chemmater.0c00245.Suche in Google Scholar
105. Pramanik, A.; Manche, A. G.; Lindgren, F.; Ericsson, T.; Häggström, L.; Cordes, D. B.; Armstrong, A. R. Energy Storage Mater. 2024, 73, 103821. https://doi.org/10.1016/j.ensm.2024.103821.Suche in Google Scholar
106. Van Vleck, J. H. J. Chem. Phys. 1939, 7 (1), 72–84. https://doi.org/10.1063/1.1750327.Suche in Google Scholar
107. Fayaz, M.; Lai, W.; Li, J.; Chen, W.; Luo, X.; Wang, Z.; Chen, Y.; Li, D.; Abbas, S. M.; Chen, Y. Mater. Res. Bull. 2024, 170, 112593. https://doi.org/10.1016/j.materresbull.2023.112593.Suche in Google Scholar
108. Li, L.; Shen, J.; Xiao, Q.; He, C.; Zheng, J.; Chu, C.; Chen, C. Chin. Chem. Lett. 2025, 36 (11), 110421. https://doi.org/10.1016/j.cclet.2024.110421.Suche in Google Scholar
109. Li, C.-N.; Liang, H.-P.; Zhao, B.-Q.; Wei, S.-H.; Zhang, X. J. Mater. Inform. 2024, 4 (3).Suche in Google Scholar
110. Wengert, S.; Csányi, G.; Reuter, K.; Margraf, J. T. Chem. Sci. 2021, 12 (12), 4536–4546. https://doi.org/10.1039/d0sc05765g.Suche in Google Scholar PubMed PubMed Central
111. An, R.; Xie, C.; Chu, D.; Li, F.; Pan, S.; Yang, Z. ACS Appl. Mater. Interfaces 2024, 16 (28), 36658–36666. https://doi.org/10.1021/acsami.4c10477.Suche in Google Scholar PubMed
112. Guo, X.; Wang, Z.; Yang, J.-H.; Gong, X.-G. J. Mater. Chem. A 2024, 12 (17), 10124–10136. https://doi.org/10.1039/d4ta00721b.Suche in Google Scholar
113. Ponti, G.; Palombi, F.; Abate, D.; Ambrosino, F.; Aprea, G.; Bastianelli, T.; Beone, F.; Bertini, R.; Bracco, G.; Caporicci, M.; Calosso, B.; Chinnici, M.; Colavincenzo, A.; Cucurullo, A.; Dangelo, P.; De Rosa, M.; De Michele, P.; Funel, A.; Furini, G.; Giammattei, D.; Giusepponi, S.; Guadagni, R.; Guarnieri, G.; Italiano, A.; Magagnino, S.; Mariano, A.; Mencuccini, G.; Mercuri, C.; Migliori, S.; Ornelli, P.; Pecoraro, S.; Perozziello, A.; Pierattini, S.; Podda, S.; Poggi, F.; Quintiliani, A.; Rocchi, A.; Sciò, C.; Simoni, F.; Vita, A. 2014 International Conference on High Performance Computing & Simulation (HPCS), 2014; pp. 1030–1033.Suche in Google Scholar
© 2025 IUPAC & De Gruyter