Abstract
The International Year of Quantum Science and Technology (IYQ) celebrates the centenary of quantum mechanics (QM). In this perspective, I highlight that QM is not only a playground for physical chemists but of tremendous value to organic chemists as exemplified in its ever-increasing role in the career of Nobel prizewinner R.B. Woodward. Over three decades, this ranged from the prediction of UV-visible absorption wavelengths arising from electronic excitations to the importance of molecular orbital symmetry and the derivation of the Woodward-Hoffmann rules for pericyclic reactions.
Acknowledgments
I thank the School of Pharmacy and Biomolecular Sciences at Liverpool John Moores University for their friendship and support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Born, M. Über Quantenmechanik. Z. Phys. 1924, 26 (1), 379–395. https://doi.org/10.1007/BF01327341.Search in Google Scholar
2. Heisenberg, W. Über Quantentheoretische Umdeutung Kinematischer Und Mechanischer Beziehungen. Z. Phys. 1925, 33 (1), 879–893. https://doi.org/10.1007/BF01328377.Search in Google Scholar
3. Benfey, O. T.; Morris, P. J. T. Robert Burns Woodward: Architect and Artist in the World of Molecules; Chemical Heritage Foundation: Philadelphia, 2001.Search in Google Scholar
4. Seeman, J. I. R. B. Woodward: A Larger-than-Life Chemistry Rock Star. Angew. Chem. Int. Ed. 2017, 56 (34), 10228–10245. https://doi.org/10.1002/ANIE.201702635.Search in Google Scholar
5. Seeman, J. I. Bumps in the Road: R. B. Woodward and his Years before Tenure. Tetrahedron 2023, 145, 133599. https://doi.org/10.1016/J.TET.2023.133599.Search in Google Scholar
6. Hückel, E. Quantentheoretische Beiträge Zum Benzolproblem – I. Die Elektronenkonfiguration Des Benzols Und Verwandter Verbindungen. Z. Phys. 1931, 70 (3–4), 204–286. https://doi.org/10.1007/BF01339530.Search in Google Scholar
7. Förster, T. Farbe und Konstitution Organischer Verbindungen vom Standpunkt der Modernen Physikalischen Theorie. Z. Elektrochem. Angew. Phys. Chem. 1939, 45 (7), 548–573. https://doi.org/10.1002.10.1002/bbpc.193900065Search in Google Scholar
8. Berson, J. A. Erich Hückel, Pioneer of Organic Quantum Chemistry: Reflections on Theory and Experiment. Angew. Chem. Int. Ed. 1996, 35 (23–24), 2750–2764. https://doi.org/10.1002/ANIE.199627501.Search in Google Scholar
9. Karrer, P. Organic Chemistry, 2nd ed.; Elsevier: New York, 1947.Search in Google Scholar
10. Dannenberg, H. Über die Ultraviolettabsorption der Steroide; Preußische Akademie der Wissenschaften: Berlin, 1940.Search in Google Scholar
11. Woodward, R. B. Structure and the Absorption Spectra of α,β-Unsaturated Ketones. J. Am. Chem. Soc. 1941, 63 (4), 1123–1126. https://doi.org/10.1021/JA01849A066.Search in Google Scholar
12. Woodward, R. B.; Clifford, A. F. Structure and Absorption Spectra. II. 3-Acetoxy-Δ5-(6)-nor-Cholestene-7-Carboxylic Acid. J. Am. Chem. Soc. 1941, 63 (10), 2727–2729. https://doi.org/10.1021/JA01855A063.Search in Google Scholar
13. Woodward, R. B. Structure and Absorption Spectra. III. Normal Conjugated Dienes. J. Am. Chem. Soc. 1942, 64 (1), 72–75. https://doi.org/10.1021/JA01253A018.Search in Google Scholar
14. Woodward, R. B. Structure and Absorption Spectra. IV. Further Observations on α,β-Unsaturated Ketones. J. Am. Chem. Soc. 1942, 64 (1), 76–77. https://doi.org/10.1021/JA01253A019.Search in Google Scholar
15. Seeman, J. I. R. B. Woodward, a Great Physical Organic Chemist. J. Phys. Org. Chem. 2014, 27 (9), 708–721. https://doi.org/10.1002/POC.3328.Search in Google Scholar
16. Fieser, L. F.; Fieser, M.; Rajagopalan, S. Absorption Spectroscopy and the Structures of the Diosterols. J. Org. Chem. 1948, 13 (6), 800–806. https://doi.org/10.1021/JO01164A003.Search in Google Scholar
17. Hochstein, F. A.; Stephens, C. R.; Conover, L. H.; Regna, P. P.; Pasternack, R.; Gordon, P. N.; Pilgrim, F. J.; Brunings, K. J.; Woodward, R. B. The Structure of Terramycin. J. Am. Chem. Soc. 1953, 75 (22), 5455–5475. https://doi.org/10.1021/JA01118A001.Search in Google Scholar
18. Woodward, R. B.; Sondheimer, F.; Taub, D.; Heusler, K.; McLamore, W. M. The Total Synthesis of Steroids. J. Am. Chem. Soc. 1952, 74 (17), 4223–4251. https://doi.org/10.1021/JA01137A001.Search in Google Scholar
19. Djerassi, C. Steroids Made it Possible; American Chemical Society: Washington, 1990.Search in Google Scholar
20. Hatanaka, M.; Sayama, D.; Miyasaka, M. Optical Activities of Steroid Ketones – Elucidation of the Octant Rule. Spectrochim. Acta, Part A 2018, 200, 298–306. https://doi.org/10.1016/J.SAA.2018.04.030.Search in Google Scholar
21. Moffitt, W.; Woodward, R. B.; Moscowitz, A.; Klyne, W.; Djerassi, C. Structure and the Optical Rotatory Dispersion of Saturated Ketones. J. Am. Chem. Soc. 1961, 83 (19), 4013–4018. https://doi.org/10.1021/JA01480A015.Search in Google Scholar
22. Woodward, R. B.; Weiler, L. S.; Dutta, P. C. The Structure of Magnamycin. J. Am. Chem. Soc. 1965, 87 (20), 4662–4663. https://doi.org/10.1021/JA00948A058.Search in Google Scholar
23. Kermack, W. O.; Robinson, R. LI.– An Explanation of the Property of Induced Polarity of Atoms and an Interpretation of the Theory of Partial Valencies on an Electronic Basis. J. Chem. Soc., Trans. 1922, 121 (0), 427–440. https://doi.org/10.1039/CT9222100427.Search in Google Scholar
24. Rây, J. N.; Robinson, R. CCXII – The Nitration of m-Meconine. J. Chem. Soc., Trans. 1925, 127 (0), 1618–1623. https://doi.org/10.1039/CT9252701618.Search in Google Scholar
25. Wheland, G. W. Advanced Organic Chemistry, 2nd ed.; Wiley: New York, 1949.Search in Google Scholar
26. Lea, T. R.; Robinson, R. CCCXIII – The Fission of Some Methoxylated Benzophenones. J. Chem. Soc. 1926, 129, 2351–2355. https://doi.org/10.1039/JR9262902351.Search in Google Scholar
27. Bradley, W.; Robinson, R. CLXXIV – The Interaction of Benzoyl Chloride and Diazomethane Together with a Discussion of the Reactions of the Diazenes. J. Chem. Soc. 1928, 1310–1318. https://doi.org/10.1039/JR9280001310.Search in Google Scholar
28. Woodward, R. B.; Doering, W. E. The Total Synthesis of Quinine. J. Am. Chem. Soc. 1944, 66 (5), 849. https://doi.org/10.1021/JA01233A516.Search in Google Scholar
29. Woodward, R. B.; Doering, W. E. The Total Synthesis of Quinine. J. Am. Chem. Soc. 1945, 67 (5), 860–874. https://doi.org/10.1021/JA01221A051.Search in Google Scholar
30. Kealy, T. J.; Pauson, P. L. A New Type of Organo-Iron Compound. Nature 1951, 168 (4285), 1039–1040. https://doi.org/10.1038/1681039B0.Search in Google Scholar
31. Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. The Structure of Iron Bis-Cyclopentadienyl. J. Am. Chem. Soc. 1952, 74 (8), 2125–2126. https://doi.org/10.1021/JA01128A527.Search in Google Scholar
32. Fischer, E. O.; Pfab, W. Cyclopentadien-Metallkomplexe Ein Neuer Typ Metallorganischer Verbindungen. Z. Naturforsch., B: J. Chem. Sci. 1952, 7 (7), 377–379. https://doi.org/10.1515/ZNB-1952-0701.Search in Google Scholar
33. Woodward, R. B.; Rosenblum, M.; Whiting, M. C. A New Aromatic System. J. Am. Chem. Soc. 1952, 74 (13), 3458–3459. https://doi.org/10.1021/JA01133A543.Search in Google Scholar
34. Winstein, S.; Shatavsky, M.; Norton, C.; Woodward, R. B. 7-Norbornenyl and 7-Norbornyl Cations. J. Am. Chem. Soc. 1955, 77 (15), 4183–4184. https://doi.org/10.1021/JA01620A078.Search in Google Scholar
35. Woodward, R. B. The Mechanism of the Diels-Alder Reaction. J. Am. Chem. Soc. 1942, 64 (12), 3058–3059. https://doi.org/10.1021/JA01264A521.Search in Google Scholar
36. Woodward, R. B.; Baer, H. Studies on Diene-Addition Reactions. II. the Reaction of 6,6-Pentamethylenefulvene with Maleic Anhydride. J. Am. Chem. Soc. 1944, 66 (4), 645–649. https://doi.org/10.1021/JA01232A042.Search in Google Scholar
37. Evans, M. G. The Activation Energies of Reactions Involving Conjugated Systems. Trans. Faraday Soc. 1939, 35, 824–834. https://doi.org/10.1039/TF9393500824.Search in Google Scholar
38. Woodward, R. B.; Katz, T. J. The Mechanism of the Diels-Alder Reaction. Tetrahedron 1959, 5 (1), 70–89. https://doi.org/10.1016/0040-4020(59)80072-7.Search in Google Scholar
39. Dewar, M. J. S. Mechanism of the Diels-Alder Reaction. Tetrahedron Lett. 1959, 1 (4), 16–18. https://doi.org/10.1016/S0040-4039(01)82720-9.Search in Google Scholar
40. Houk, K. N.; Liu, F.; Yang, Z.; Seeman, J. I. Evolution of the Diels–Alder Reaction Mechanism Since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions. Angew. Chem. Int. Ed. 2021, 60 (23), 12660–12681. https://doi.org/10.1002/ANIE.202001654.Search in Google Scholar
41. Vermeeren, P.; Hamlin, T. A.; Bickelhaupt, F. M. Origin of Asynchronicity in Diels – Alder Reactions. Phys. Chem. Chem. Phys. 2021, 23 (36), 20095–20106. https://doi.org/10.1039/D1CP02456F.Search in Google Scholar
42. E Doering, W. V.; Roth, W. R.; Roth, W. R. The Overlap of Two Allyl Radicals or a Four-Centered Transition State in the Cope Rearrangement. Tetrahedron 1962, 18 (1), 67–74. https://doi.org/10.1016/0040-4020(62)80025-8.Search in Google Scholar
43. Streitwieser, A.Jr. Molecular Orbital Theory for Organic Chemists; Wiley: New York, 1961.10.1149/1.2425396Search in Google Scholar
44. Seeman, J. I. Why Woodward and Hoffmann? and Why 1965?**. Chem. Record 2023, 23 (1), e202200239. https://doi.org/10.1002/TCR.202200239.Search in Google Scholar
45. Woodward, R. B.; Hoffmann, R. Stereochemistry of Electrocyclic Reactions. J. Am. Chem. Soc. 1965, 87 (2), 395–397. https://doi.org/10.1021/JA01080A054.Search in Google Scholar
46. Hoffmann, R.; Woodward, R. B. Selection Rules for Concerted Cycloaddition Reactions. J. Am. Chem. Soc. 1965, 87 (9), 2046–2048. https://doi.org/10.1021/JA01087A034.Search in Google Scholar
47. Woodward, R. B.; Hoffmann, R. Selection Rules for Sigmatropic Reactions. J. Am. Chem. Soc. 1965, 87 (11), 2511–2513. https://doi.org/10.1021/JA01089A050.Search in Google Scholar
48. Hoffmann, R.; Woodward, R. B. Orbital Symmetries and Endo-Exo Relationships in Concerted Cycloaddition Reactions. J. Am. Chem. Soc. 1965, 87 (19), 4388–4389. https://doi.org/10.1021/JA00947A033.Search in Google Scholar
49. Hoffmann, R.; Woodward, R. B. Orbital Symmetries and Orientational Effects in a Sigmatropic Reaction. J. Am. Chem. Soc. 1965, 87 (19), 4389–4390. https://doi.org/10.1021/JA00947A034.Search in Google Scholar
50. Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20 (4), 722–725. https://doi.org/10.1063/1.1700523.Search in Google Scholar
51. Seeman, J. I. Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward-Hoffmann Rules. Part II. A Sleeping Beauty in Chemistry†**. Chem. Record 2022, 22 (4), e202100300. https://doi.org/10.1002/TCR.202100300.Search in Google Scholar
52. Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry. Angew. Chem. Int. Ed. 1969, 8 (11), 781–853. https://doi.org/10.1002/ANIE.196907811.Search in Google Scholar
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- IUPAC Recommendations
- Experimental methods and data evaluation procedures for the determination of radical copolymerization reactivity ratios from composition data (IUPAC Recommendations 2025)
- IUPAC Technical Reports
- Kinetic parameters for thermal decomposition of commercially available dialkyldiazenes (IUPAC Technical Report)
- FAIRSpec-ready spectroscopic data collections – advice for researchers, authors, and data managers (IUPAC Technical Report)
- Review Articles
- Are the Lennard-Jones potential parameters endowed with transferability? Lessons learnt from noble gases
- Quantum mechanics and human dynamics
- Quantum chemistry and large systems – a personal perspective
- The organic chemist and the quantum through the prism of R. B. Woodward
- Relativistic quantum theory for atomic and molecular response properties
- A chemical perspective of the 100 years of quantum mechanics
- Methylene: a turning point in the history of quantum chemistry and an enduring paradigm
- Quantum chemistry – from the first steps to linear-scaling electronic structure methods
- Nonadiabatic molecular dynamics on quantum computers: challenges and opportunities
- Research Articles
- Alzheimer’s disease – because β-amyloid cannot distinguish neurons from bacteria: an in silico simulation study
- Molecular electrostatic potential as a guide to intermolecular interactions: challenge of nucleophilic interaction sites
- Photophysical properties of functionalized terphenyls and implications to photoredox catalysis
- Combining molecular fragmentation and machine learning for accurate prediction of adiabatic ionization potentials
- Thermodynamic and kinetic insights into B10H14 and B10H14 2−
- Quantum origin of atoms and molecules – role of electron dynamics and energy degeneracy in atomic reactivity and chemical bonding
- Clifford Gaussians as Atomic Orbitals for periodic systems: one and two electrons in a Clifford Torus
- First-principles modeling of structural and RedOx processes in high-voltage Mn-based cathodes for sodium-ion batteries
- Erratum
- Erratum to: Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Articles in the same Issue
- Frontmatter
- IUPAC Recommendations
- Experimental methods and data evaluation procedures for the determination of radical copolymerization reactivity ratios from composition data (IUPAC Recommendations 2025)
- IUPAC Technical Reports
- Kinetic parameters for thermal decomposition of commercially available dialkyldiazenes (IUPAC Technical Report)
- FAIRSpec-ready spectroscopic data collections – advice for researchers, authors, and data managers (IUPAC Technical Report)
- Review Articles
- Are the Lennard-Jones potential parameters endowed with transferability? Lessons learnt from noble gases
- Quantum mechanics and human dynamics
- Quantum chemistry and large systems – a personal perspective
- The organic chemist and the quantum through the prism of R. B. Woodward
- Relativistic quantum theory for atomic and molecular response properties
- A chemical perspective of the 100 years of quantum mechanics
- Methylene: a turning point in the history of quantum chemistry and an enduring paradigm
- Quantum chemistry – from the first steps to linear-scaling electronic structure methods
- Nonadiabatic molecular dynamics on quantum computers: challenges and opportunities
- Research Articles
- Alzheimer’s disease – because β-amyloid cannot distinguish neurons from bacteria: an in silico simulation study
- Molecular electrostatic potential as a guide to intermolecular interactions: challenge of nucleophilic interaction sites
- Photophysical properties of functionalized terphenyls and implications to photoredox catalysis
- Combining molecular fragmentation and machine learning for accurate prediction of adiabatic ionization potentials
- Thermodynamic and kinetic insights into B10H14 and B10H14 2−
- Quantum origin of atoms and molecules – role of electron dynamics and energy degeneracy in atomic reactivity and chemical bonding
- Clifford Gaussians as Atomic Orbitals for periodic systems: one and two electrons in a Clifford Torus
- First-principles modeling of structural and RedOx processes in high-voltage Mn-based cathodes for sodium-ion batteries
- Erratum
- Erratum to: Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition