Home Physical Sciences The organic chemist and the quantum through the prism of R. B. Woodward
Article
Licensed
Unlicensed Requires Authentication

The organic chemist and the quantum through the prism of R. B. Woodward

  • A. Ganesan ORCID logo EMAIL logo
Published/Copyright: October 7, 2025

Abstract

The International Year of Quantum Science and Technology (IYQ) celebrates the centenary of quantum mechanics (QM). In this perspective, I highlight that QM is not only a playground for physical chemists but of tremendous value to organic chemists as exemplified in its ever-increasing role in the career of Nobel prizewinner R.B. Woodward. Over three decades, this ranged from the prediction of UV-visible absorption wavelengths arising from electronic excitations to the importance of molecular orbital symmetry and the derivation of the Woodward-Hoffmann rules for pericyclic reactions.


Corresponding author: A. Ganesan, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK, e-mail:
Dedication: I dedicate this article to Professor Clayton H. Heathcock, gifted scientist and extraordinary mentor, in advance of his 90th birthday. Happy Birthday, Clayton! Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Acknowledgments

I thank the School of Pharmacy and Biomolecular Sciences at Liverpool John Moores University for their friendship and support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Born, M. Über Quantenmechanik. Z. Phys. 1924, 26 (1), 379–395. https://doi.org/10.1007/BF01327341.Search in Google Scholar

2. Heisenberg, W. Über Quantentheoretische Umdeutung Kinematischer Und Mechanischer Beziehungen. Z. Phys. 1925, 33 (1), 879–893. https://doi.org/10.1007/BF01328377.Search in Google Scholar

3. Benfey, O. T.; Morris, P. J. T. Robert Burns Woodward: Architect and Artist in the World of Molecules; Chemical Heritage Foundation: Philadelphia, 2001.Search in Google Scholar

4. Seeman, J. I. R. B. Woodward: A Larger-than-Life Chemistry Rock Star. Angew. Chem. Int. Ed. 2017, 56 (34), 10228–10245. https://doi.org/10.1002/ANIE.201702635.Search in Google Scholar

5. Seeman, J. I. Bumps in the Road: R. B. Woodward and his Years before Tenure. Tetrahedron 2023, 145, 133599. https://doi.org/10.1016/J.TET.2023.133599.Search in Google Scholar

6. Hückel, E. Quantentheoretische Beiträge Zum Benzolproblem – I. Die Elektronenkonfiguration Des Benzols Und Verwandter Verbindungen. Z. Phys. 1931, 70 (3–4), 204–286. https://doi.org/10.1007/BF01339530.Search in Google Scholar

7. Förster, T. Farbe und Konstitution Organischer Verbindungen vom Standpunkt der Modernen Physikalischen Theorie. Z. Elektrochem. Angew. Phys. Chem. 1939, 45 (7), 548–573. https://doi.org/10.1002.10.1002/bbpc.193900065Search in Google Scholar

8. Berson, J. A. Erich Hückel, Pioneer of Organic Quantum Chemistry: Reflections on Theory and Experiment. Angew. Chem. Int. Ed. 1996, 35 (23–24), 2750–2764. https://doi.org/10.1002/ANIE.199627501.Search in Google Scholar

9. Karrer, P. Organic Chemistry, 2nd ed.; Elsevier: New York, 1947.Search in Google Scholar

10. Dannenberg, H. Über die Ultraviolettabsorption der Steroide; Preußische Akademie der Wissenschaften: Berlin, 1940.Search in Google Scholar

11. Woodward, R. B. Structure and the Absorption Spectra of α,β-Unsaturated Ketones. J. Am. Chem. Soc. 1941, 63 (4), 1123–1126. https://doi.org/10.1021/JA01849A066.Search in Google Scholar

12. Woodward, R. B.; Clifford, A. F. Structure and Absorption Spectra. II. 3-Acetoxy-Δ5-(6)-nor-Cholestene-7-Carboxylic Acid. J. Am. Chem. Soc. 1941, 63 (10), 2727–2729. https://doi.org/10.1021/JA01855A063.Search in Google Scholar

13. Woodward, R. B. Structure and Absorption Spectra. III. Normal Conjugated Dienes. J. Am. Chem. Soc. 1942, 64 (1), 72–75. https://doi.org/10.1021/JA01253A018.Search in Google Scholar

14. Woodward, R. B. Structure and Absorption Spectra. IV. Further Observations on α,β-Unsaturated Ketones. J. Am. Chem. Soc. 1942, 64 (1), 76–77. https://doi.org/10.1021/JA01253A019.Search in Google Scholar

15. Seeman, J. I. R. B. Woodward, a Great Physical Organic Chemist. J. Phys. Org. Chem. 2014, 27 (9), 708–721. https://doi.org/10.1002/POC.3328.Search in Google Scholar

16. Fieser, L. F.; Fieser, M.; Rajagopalan, S. Absorption Spectroscopy and the Structures of the Diosterols. J. Org. Chem. 1948, 13 (6), 800–806. https://doi.org/10.1021/JO01164A003.Search in Google Scholar

17. Hochstein, F. A.; Stephens, C. R.; Conover, L. H.; Regna, P. P.; Pasternack, R.; Gordon, P. N.; Pilgrim, F. J.; Brunings, K. J.; Woodward, R. B. The Structure of Terramycin. J. Am. Chem. Soc. 1953, 75 (22), 5455–5475. https://doi.org/10.1021/JA01118A001.Search in Google Scholar

18. Woodward, R. B.; Sondheimer, F.; Taub, D.; Heusler, K.; McLamore, W. M. The Total Synthesis of Steroids. J. Am. Chem. Soc. 1952, 74 (17), 4223–4251. https://doi.org/10.1021/JA01137A001.Search in Google Scholar

19. Djerassi, C. Steroids Made it Possible; American Chemical Society: Washington, 1990.Search in Google Scholar

20. Hatanaka, M.; Sayama, D.; Miyasaka, M. Optical Activities of Steroid Ketones – Elucidation of the Octant Rule. Spectrochim. Acta, Part A 2018, 200, 298–306. https://doi.org/10.1016/J.SAA.2018.04.030.Search in Google Scholar

21. Moffitt, W.; Woodward, R. B.; Moscowitz, A.; Klyne, W.; Djerassi, C. Structure and the Optical Rotatory Dispersion of Saturated Ketones. J. Am. Chem. Soc. 1961, 83 (19), 4013–4018. https://doi.org/10.1021/JA01480A015.Search in Google Scholar

22. Woodward, R. B.; Weiler, L. S.; Dutta, P. C. The Structure of Magnamycin. J. Am. Chem. Soc. 1965, 87 (20), 4662–4663. https://doi.org/10.1021/JA00948A058.Search in Google Scholar

23. Kermack, W. O.; Robinson, R. LI.– An Explanation of the Property of Induced Polarity of Atoms and an Interpretation of the Theory of Partial Valencies on an Electronic Basis. J. Chem. Soc., Trans. 1922, 121 (0), 427–440. https://doi.org/10.1039/CT9222100427.Search in Google Scholar

24. Rây, J. N.; Robinson, R. CCXII – The Nitration of m-Meconine. J. Chem. Soc., Trans. 1925, 127 (0), 1618–1623. https://doi.org/10.1039/CT9252701618.Search in Google Scholar

25. Wheland, G. W. Advanced Organic Chemistry, 2nd ed.; Wiley: New York, 1949.Search in Google Scholar

26. Lea, T. R.; Robinson, R. CCCXIII – The Fission of Some Methoxylated Benzophenones. J. Chem. Soc. 1926, 129, 2351–2355. https://doi.org/10.1039/JR9262902351.Search in Google Scholar

27. Bradley, W.; Robinson, R. CLXXIV – The Interaction of Benzoyl Chloride and Diazomethane Together with a Discussion of the Reactions of the Diazenes. J. Chem. Soc. 1928, 1310–1318. https://doi.org/10.1039/JR9280001310.Search in Google Scholar

28. Woodward, R. B.; Doering, W. E. The Total Synthesis of Quinine. J. Am. Chem. Soc. 1944, 66 (5), 849. https://doi.org/10.1021/JA01233A516.Search in Google Scholar

29. Woodward, R. B.; Doering, W. E. The Total Synthesis of Quinine. J. Am. Chem. Soc. 1945, 67 (5), 860–874. https://doi.org/10.1021/JA01221A051.Search in Google Scholar

30. Kealy, T. J.; Pauson, P. L. A New Type of Organo-Iron Compound. Nature 1951, 168 (4285), 1039–1040. https://doi.org/10.1038/1681039B0.Search in Google Scholar

31. Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. The Structure of Iron Bis-Cyclopentadienyl. J. Am. Chem. Soc. 1952, 74 (8), 2125–2126. https://doi.org/10.1021/JA01128A527.Search in Google Scholar

32. Fischer, E. O.; Pfab, W. Cyclopentadien-Metallkomplexe Ein Neuer Typ Metallorganischer Verbindungen. Z. Naturforsch., B: J. Chem. Sci. 1952, 7 (7), 377–379. https://doi.org/10.1515/ZNB-1952-0701.Search in Google Scholar

33. Woodward, R. B.; Rosenblum, M.; Whiting, M. C. A New Aromatic System. J. Am. Chem. Soc. 1952, 74 (13), 3458–3459. https://doi.org/10.1021/JA01133A543.Search in Google Scholar

34. Winstein, S.; Shatavsky, M.; Norton, C.; Woodward, R. B. 7-Norbornenyl and 7-Norbornyl Cations. J. Am. Chem. Soc. 1955, 77 (15), 4183–4184. https://doi.org/10.1021/JA01620A078.Search in Google Scholar

35. Woodward, R. B. The Mechanism of the Diels-Alder Reaction. J. Am. Chem. Soc. 1942, 64 (12), 3058–3059. https://doi.org/10.1021/JA01264A521.Search in Google Scholar

36. Woodward, R. B.; Baer, H. Studies on Diene-Addition Reactions. II. the Reaction of 6,6-Pentamethylenefulvene with Maleic Anhydride. J. Am. Chem. Soc. 1944, 66 (4), 645–649. https://doi.org/10.1021/JA01232A042.Search in Google Scholar

37. Evans, M. G. The Activation Energies of Reactions Involving Conjugated Systems. Trans. Faraday Soc. 1939, 35, 824–834. https://doi.org/10.1039/TF9393500824.Search in Google Scholar

38. Woodward, R. B.; Katz, T. J. The Mechanism of the Diels-Alder Reaction. Tetrahedron 1959, 5 (1), 70–89. https://doi.org/10.1016/0040-4020(59)80072-7.Search in Google Scholar

39. Dewar, M. J. S. Mechanism of the Diels-Alder Reaction. Tetrahedron Lett. 1959, 1 (4), 16–18. https://doi.org/10.1016/S0040-4039(01)82720-9.Search in Google Scholar

40. Houk, K. N.; Liu, F.; Yang, Z.; Seeman, J. I. Evolution of the Diels–Alder Reaction Mechanism Since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions. Angew. Chem. Int. Ed. 2021, 60 (23), 12660–12681. https://doi.org/10.1002/ANIE.202001654.Search in Google Scholar

41. Vermeeren, P.; Hamlin, T. A.; Bickelhaupt, F. M. Origin of Asynchronicity in Diels – Alder Reactions. Phys. Chem. Chem. Phys. 2021, 23 (36), 20095–20106. https://doi.org/10.1039/D1CP02456F.Search in Google Scholar

42. E Doering, W. V.; Roth, W. R.; Roth, W. R. The Overlap of Two Allyl Radicals or a Four-Centered Transition State in the Cope Rearrangement. Tetrahedron 1962, 18 (1), 67–74. https://doi.org/10.1016/0040-4020(62)80025-8.Search in Google Scholar

43. Streitwieser, A.Jr. Molecular Orbital Theory for Organic Chemists; Wiley: New York, 1961.10.1149/1.2425396Search in Google Scholar

44. Seeman, J. I. Why Woodward and Hoffmann? and Why 1965?**. Chem. Record 2023, 23 (1), e202200239. https://doi.org/10.1002/TCR.202200239.Search in Google Scholar

45. Woodward, R. B.; Hoffmann, R. Stereochemistry of Electrocyclic Reactions. J. Am. Chem. Soc. 1965, 87 (2), 395–397. https://doi.org/10.1021/JA01080A054.Search in Google Scholar

46. Hoffmann, R.; Woodward, R. B. Selection Rules for Concerted Cycloaddition Reactions. J. Am. Chem. Soc. 1965, 87 (9), 2046–2048. https://doi.org/10.1021/JA01087A034.Search in Google Scholar

47. Woodward, R. B.; Hoffmann, R. Selection Rules for Sigmatropic Reactions. J. Am. Chem. Soc. 1965, 87 (11), 2511–2513. https://doi.org/10.1021/JA01089A050.Search in Google Scholar

48. Hoffmann, R.; Woodward, R. B. Orbital Symmetries and Endo-Exo Relationships in Concerted Cycloaddition Reactions. J. Am. Chem. Soc. 1965, 87 (19), 4388–4389. https://doi.org/10.1021/JA00947A033.Search in Google Scholar

49. Hoffmann, R.; Woodward, R. B. Orbital Symmetries and Orientational Effects in a Sigmatropic Reaction. J. Am. Chem. Soc. 1965, 87 (19), 4389–4390. https://doi.org/10.1021/JA00947A034.Search in Google Scholar

50. Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20 (4), 722–725. https://doi.org/10.1063/1.1700523.Search in Google Scholar

51. Seeman, J. I. Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward-Hoffmann Rules. Part II. A Sleeping Beauty in Chemistry†**. Chem. Record 2022, 22 (4), e202100300. https://doi.org/10.1002/TCR.202100300.Search in Google Scholar

52. Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry. Angew. Chem. Int. Ed. 1969, 8 (11), 781–853. https://doi.org/10.1002/ANIE.196907811.Search in Google Scholar

Received: 2025-06-03
Accepted: 2025-09-23
Published Online: 2025-10-07
Published in Print: 2025-11-25

© 2025 IUPAC & De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. IUPAC Recommendations
  3. Experimental methods and data evaluation procedures for the determination of radical copolymerization reactivity ratios from composition data (IUPAC Recommendations 2025)
  4. IUPAC Technical Reports
  5. Kinetic parameters for thermal decomposition of commercially available dialkyldiazenes (IUPAC Technical Report)
  6. FAIRSpec-ready spectroscopic data collections – advice for researchers, authors, and data managers (IUPAC Technical Report)
  7. Review Articles
  8. Are the Lennard-Jones potential parameters endowed with transferability? Lessons learnt from noble gases
  9. Quantum mechanics and human dynamics
  10. Quantum chemistry and large systems – a personal perspective
  11. The organic chemist and the quantum through the prism of R. B. Woodward
  12. Relativistic quantum theory for atomic and molecular response properties
  13. A chemical perspective of the 100 years of quantum mechanics
  14. Methylene: a turning point in the history of quantum chemistry and an enduring paradigm
  15. Quantum chemistry – from the first steps to linear-scaling electronic structure methods
  16. Nonadiabatic molecular dynamics on quantum computers: challenges and opportunities
  17. Research Articles
  18. Alzheimer’s disease – because β-amyloid cannot distinguish neurons from bacteria: an in silico simulation study
  19. Molecular electrostatic potential as a guide to intermolecular interactions: challenge of nucleophilic interaction sites
  20. Photophysical properties of functionalized terphenyls and implications to photoredox catalysis
  21. Combining molecular fragmentation and machine learning for accurate prediction of adiabatic ionization potentials
  22. Thermodynamic and kinetic insights into B10H14 and B10H14 2−
  23. Quantum origin of atoms and molecules – role of electron dynamics and energy degeneracy in atomic reactivity and chemical bonding
  24. Clifford Gaussians as Atomic Orbitals for periodic systems: one and two electrons in a Clifford Torus
  25. First-principles modeling of structural and RedOx processes in high-voltage Mn-based cathodes for sodium-ion batteries
  26. Erratum
  27. Erratum to: Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0534/html
Scroll to top button