Home Physical Sciences Methylene: a turning point in the history of quantum chemistry and an enduring paradigm
Article
Licensed
Unlicensed Requires Authentication

Methylene: a turning point in the history of quantum chemistry and an enduring paradigm

  • Ashley M. Allen ORCID logo , Allison C. Sargent ORCID logo and Henry F. Schaefer ORCID logo EMAIL logo
Published/Copyright: October 20, 2025

Abstract

Prior to 1970, no successful ab initio electronic structure predictions were made that challenged experiment for polyatomic molecules. For diatomics, the work of Ernest Davidson stands out, in 1960 explaining that two spectroscopically known but misunderstood electronic states of H2 were in fact part of the very same potential energy curve. Another diatomic example was the startling 1968 overturn by Kolos and Wolniewicz of the “known” experimental dissociation energy of H2. Moving to polyatomics, the research in 1970 concerning the structure of triplet methylene captured the imagination of many chemists, and the 1982 success of theory for the singlet-triplet separation of methylene confirmed for many the great usefulness of ab initio theory. In the second half of this paper, the utility of methods based on single Slater determinant reference wavefunctions for both singlet and triplet methylene is demonstrated. In particular, we examine how the optimized geometries and harmonic vibrational frequencies of triplet and singlet CH2 evolve with systematic improvements in basis set size and valence electron correlation treatment. To accurately pinpoint the geometric structures and singlet-triplet splitting of methylene, we perform comprehensive focal point analyses (FPA) that push the level of theory to new heights, leveraging core-valence basis sets up to sextuple-zeta quality and all-electron coupled-cluster methods through CCSDTQ(P) appended with relativistic (MVD1) and non-Born-Oppenheimer (DBOC) corrections. Our final FPA prediction for the singlet-triplet splitting is 9.01 kcal mol−1, in complete agreement with the best empirical estimate of 9.00 ± 0.01 kcal mol−1. The corresponding optimized FPA geometries are [r e(H–C), θ e(H–C–H)] = (1.1063 Å, 102.35°) for ã1A1 CH2 and (1.0756 Å, 133.94°) for X̃3B1 CH2, in close agreement with the best existing experimental and theoretical structures but with a little finer precision. Our outcomes not only affirm the validity of the contemporary single-reference coupled-cluster theory pushed to high order but also provide definitive resolutions for a paradigmatic molecule that has long been emblematic of the challenges and triumphs that have shaped a century of quantum chemistry.


Corresponding author: Henry F. Schaefer, III, Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology. Ashley M. Allen and Allison C. Sargent: authors contributed equally and share primary authorship.

Funding source: U.S. Department of Energy, Basic Energy Sciences, Division of Chemistry, Computational and Theoretical Chemistry (CTC) Program

Award Identifier / Grant number: DE-SC0018412

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Chemistry, Computational and Theoretical Chemistry (CTC) Program under Contract No. DE-SC0018412.

  7. Data availability: Not applicable. (All raw data is included in text).

References

1. Foster, J. M.; Boys, S. F. Quantum Variational Calculations for a Range of CH2 Configurations. Rev. Mod. Phys. 1960, 32, 305–307; https://doi.org/10.1103/revmodphys.32.305.Search in Google Scholar

2. Herzberg, G. The Bakerian Lecture, The Spectra and Structures of Free Methyl and Free Methylene. Proc. Roy. Soc. (London) A. 1961, 262, 291–317; https://doi.org/10.1098/rspa.1961.0120.Search in Google Scholar

3. Jordan, P. C. H.; Longuet-Higgins, H. C. The Lower Electronic Levels of the Radicals CH, CH2, CH3, NH, NH2, BH, BH2, and BH3. Mol. Phys. 1962, 5, 121–138; https://doi.org/10.1080/00268976200100131.Search in Google Scholar

4. Pople, J. A.; Segal, G. A. Approximate Self-Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems. J. Chem. Phys. 1966, 44, 3289–3296; https://doi.org/10.1063/1.1727227.Search in Google Scholar

5. Harrison, J. F.; Allen, L. C. Electronic Structure of Methylene. J. Amer. Chem. Soc. 1969, 91, 807–823; https://doi.org/10.1021/ja01032a004.Search in Google Scholar

6. Bender, C. F.; Schaefer, H. F.III New Theoretical Evidence for the Nonlinearity of the Triplet Ground State of Methylene. J. Am. Chem. Soc. 1970, 92, 4984–4985; https://doi.org/10.1021/ja00719a039.Search in Google Scholar

7. Gaspar, P. P.; Hammond, G. S. Chapter 8 – Spin States in Carbene Chemistry. In Carbenes; Moss, R. A.; Jones, M. Eds.; John Wiley and Sons: New York, Vol. II, 1975; pp. 207–362. Quotation cited is on page 251.Search in Google Scholar

8. Wasserman, E.; Yager, W. A.; Kuck, V. J. EPR of CH2: A Substiantially Bent and Partially Rotating Ground State Triplet. Chem. Phys. Lett. 1970, 7, 409–413; https://doi.org/10.1016/0009-2614(70)80320-7.Search in Google Scholar

9. Bernheim, R. A.; Bernard, H. W.; Wang, P. S.; Wood, L. S.; Skell, P. S. 13C Hyperfine Interaction in CD3. J. Chem. Phys. 1971, 54, 3223–3225; https://doi.org/10.1063/1.1675313.Search in Google Scholar

10. Schaefer, H. F.III Methylene: A Paradigm for Computational Quantum Chemistry. Science 1986, 231, 1100–1107; https://doi.org/10.1126/science.231.4742.1100.Search in Google Scholar

11. Hay, P. J.; Hunt, W. J.; Goddard, W. A. Generalized Valence Bond Wavefunctions for the Low Lying States of Methylene. Chem. Phys. Lett. 1972, 13, 30–35; https://doi.org/10.1016/0009-2614(72)80035-6.Search in Google Scholar

12. Bender, C. F.; Schaefer, H. F.III; Franceschetti, D. R.; Allen, L. C. Singlet-Triplet Energy Separation, Walsh-Mulliken Diagrams, and Singlet d-polarization Effects in Methylene. J. Am. Chem. Soc. 1972, 94, 6888–6893; https://doi.org/10.1021/ja00775a004.Search in Google Scholar

13. Zittel, P. F.; Ellison, G. B.; O’Neil, S. V.; Herbst, E.; Lineberger, W. C.; Reinhardt, W. P. Laser Photoelectron Spectrometry of CH2–. Singlet-Triplet Splitting and Electron Affinity of CH2. J. Am. Chem. Soc. 1976, 98, 3731–3732; https://doi.org/10.1021/ja00428a070.Search in Google Scholar

14. Hayden, C. C.; Neumark, D. M.; Shobatake, K.; Sparks, R. K.; Lee, Y. T. Methylene Singlet-Triplet Energy Splitting by Molecular Beam Photodissociation of Ketene. J. Chem. Phys. 1982, 76, 3607–3613; https://doi.org/10.1063/1.443397.Search in Google Scholar

15. Sears, T. J.; Bunker, P. R.; McKellar, A. R. W.; Evenson, K. M.; Jennings, D. A.; Brown, J. M. The Rotational Spectrum and Hyperfine Structure of the Methylene Radical CH2 Studied by Far-Infrared Laser Magnetic Resonance Spectroscopy. J. Chem. Phys. 1982, 77, 5348–5362; https://doi.org/10.1063/1.443783.Search in Google Scholar

16. Sears, T. J.; Bunker, P. R.; McKellar, A. R. W. The Laser Magnetic Resonance Spectrum of the ν2 Band of the Methylene Radical CH2. J. Chem. Phys. 1982, 77, 5363–5369; https://doi.org/10.1063/1.443784.Search in Google Scholar

17. McKellar, A. R. W.; Bunker, P. R.; Sears, T. J.; Evenson, K. M.; Saykally, R. J.; Langhoff, S. R. Far Infrared Laser Magnetic Resonance of Singlet Methylene: Singlet-Triplet Perturbations, Singlet-Triplet Transitions, and the Singlet-Triplet Splitting. J. Chem. Phys. 1983, 79, 5251–5264; https://doi.org/10.1063/1.445713.Search in Google Scholar

18. McKellar, A. R. W.; Yamada, C.; Hirota, E. Detection of the ν2 Bands of CD2 and CH2 by Infrared Diode Laser Spectroscopy. J. Chem. Phys. 1983, 79, 1220–1223; https://doi.org/10.1063/1.445926.Search in Google Scholar

19. Marshall, M. D.; McKellar, A. R. W. The ν2 Fundamental Band of Triplet CH2. J. Chem. Phys. 1986, 85, 3716–3723; https://doi.org/10.1063/1.450943.Search in Google Scholar

20. Sears, T. J. Infrared Rotational Transitions in CH2 X̃ 3B1 Observed by Diode Laser Absorption. J. Chem. Phys. 1986, 85, 3711–3715; https://doi.org/10.1063/1.450942.Search in Google Scholar

21. Bunker, P. R.; Sears, T. J.; McKellar, A. R. W.; Evenson, K. M.; Lovas, F. J. The Rotational Spectrum of the CD2 Radical Studied by Far Infrared Laser Magnetic Resonance Spectroscopy. J. Chem. Phys. 1983, 79, 1211–1219; https://doi.org/10.1063/1.445925.Search in Google Scholar

22. Bunker, P. R.; Sears, T. J. Analysis of the Laser Photoelectron Spectrum of CH2−. J. Chem. Phys. 1985, 83, 4866–4876; https://doi.org/10.1063/1.449747.Search in Google Scholar

23. Sears, T. J.; Bunker, P. R. A Reinterpretation of the CH2− Photoelectron Spectrum. J. Chem. Phys. 1983, 79, 5265–5271; https://doi.org/10.1063/1.445714.Search in Google Scholar

24. Leopold, D. G.; Murray, K. K.; Miller, A. E. S.; Lineberger, W. C. Methylene: A Study of the X̃ 3B1 and ã 1A1 States by Photoelectron Spectroscopy of CH2− and CD2−. J. Chem. Phys. 1985, 83, 4849–4865; https://doi.org/10.1063/1.449746.Search in Google Scholar

25. Coudert, L. H.; Gans, B.; Holzmeier, F.; Loison, J.-C.; Garcia, G. A.; Alcaraz, C.; Lopes, A.; Röder, A. Experimental and Theoretical Threshold Photoelectron Spectra of Methylene. J. Chem. Phys. 2018, 149; https://doi.org/10.1063/1.5062834.Search in Google Scholar

26. Petek, H.; Nesbitt, D. J.; Darwin, D. C.; Ogilby, P. R.; Moore, C. B.; Ramsay, D. A. Analysis of CH2 ã1A1 (1,0,0) and (0,0,1) Coriolis-Coupled States, ã1A1–X̃ 3B1 Spin–orbit Coupling, and the Equilibrium Structure of CH2 ã1A1 State. J. Chem. Phys. 1989, 91, 6566–6578; https://doi.org/10.1063/1.457375.Search in Google Scholar

27. Irikura, K. K.; Hudgens, J. W. Detection of Methylene (X̃ 3B1) Radicals by 3 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy. J. Phys. Chem. 1992, 96, 518–519; https://doi.org/10.1021/j100181a006.Search in Google Scholar

28. Egorov, O.; Rey, M.; Viglaska, D.; Nikitin, A. V. Accurate Ab Initio Potential Energy Surface, Rovibrational Energy Levels and Resonance Interactions of Triplet (X̃ 3B1) Methylene. J. Comput. Chem. 2024, 45, 83–100; https://doi.org/10.1002/jcc.27220.Search in Google Scholar

29. Egorov, O.; Rey, M.; Viglaska, D.; Nikitin, A. V. Rovibrational Line Lists of Triplet and Singlet Methylene. J. Phys. Chem. A 2024, 128, 6960–6971; https://doi.org/10.1021/acs.jpca.4c04205.Search in Google Scholar

30. Jensen, P.; Bunker, P. R.; Hoy, A. R. The Equilibrium Geometry, Potential Function, and Rotation-Vibration Energies of CH2 in the X̃ 3B1 Ground State. J. Chem. Phys. 1982, 77, 5370–5374; https://doi.org/10.1063/1.443785.Search in Google Scholar

31. Bunker, P. R.; Jensen, P. A. Refined Potential Energy Surface for the X̃ 3B1, Electronic State of Methylene CH2. J. Chem. Phys. 1983, 79, 1224–1228. The critical underlying experimental results are seen in References 1–6 therein; https://doi.org/10.1063/1.445927.Search in Google Scholar

32. Bunker, P. R.; Jensen, P.; Kraemer, W. P.; Beardsworth, R. The Potential Surface of X̃ 3B1 Methylene (CH2) and the Singlet-Triplet Splitting. J. Chem. Phys. 1986, 85, 3724–3731; https://doi.org/10.1063/1.450944.Search in Google Scholar

33. Jensen, P.; Bunker, P. R. The Potential Surface and Stretching Frequencies of X̃ 3B1 Methylene (CH2) Determined from Experiment Using the Morse Oscillator-Rigid Bender Internal Dynamics Hamiltonian. J. Chem. Phys. 1988, 89, 1327–1332; https://doi.org/10.1063/1.455184.Search in Google Scholar

34. Comeau, D. C.; Shavitt, I.; Jensen, P.; Bunker, P. R. An Ab Initio Determination of the Potential-Energy Surfaces and Rotation-Vibration Energy Levels of Methylene in the Lowest Triplet and Singlet States and the Singlet-Triplet Splitting. J. Chem. Phys. 1989, 90, 6491–6500; https://doi.org/10.1063/1.456315.Search in Google Scholar

35. McLean, A. D.; Bunker, P. R.; Escribano, R. M.; Jensen, P. An Ab Initio Calculation of ν1 and ν3 for Triplet Methylene (X̃ 3B1 CH2) and the Determination of the Vibrationless Singlet-Triplet Splitting Te(ã 1A1). J. Chem. Phys. 1987, 87, 2166–2169; https://doi.org/10.1063/1.453141.Search in Google Scholar

36. Császár, A. G.; Leininger, M. L.; Szalay, V. The Standard Enthalpy of Formation of CH2. J. Chem. Phys. 2003, 118, 10631–10642; https://doi.org/10.1063/1.1573180.Search in Google Scholar

37. Furtenbacher, T.; Czakó, G.; Sutcliffe, B. T.; Császár, A. G.; Szalay, V. The Methylene Saga Continues: Stretching Fundamentals and Zero-point Energy of X̃ 3B1 CH2. J. Mol. Struct. 2006, 780–781, 283–294.10.1016/j.molstruc.2005.06.052Search in Google Scholar

38. Fan, J.-Q.; Zhang, W.-Y.; Ren, Q.; Chen, F. Calculations of Atomisation Energy and Singlet-Triplet Gap with Iterative Multireference Configuration Interaction. Mol. Phys. 2022, 120, e2048109; https://doi.org/10.1080/00268976.2022.2048109.Search in Google Scholar

39. Bauschlicher, C. W.Jr.; Taylor, P. R. A Full CI Treatment of the 1A1–3B1 Separation in Methylene. J. Chem. Phys. 1986, 85, 6510–6512; https://doi.org/10.1063/1.451431.Search in Google Scholar

40. Sherrill, C. D.; Leininger, M. L.; Van Huis, T. J.; Schaefer, H. F.III. Structures and Vibrational Frequencies in the Full Configuration Interaction Limit: Predictions for Four Electronic States of Methylene Using a Triple-Zeta Plus Double Polarization (TZ2P) Basis. J. Chem. Phys. 1998, 108, 1040–1049; https://doi.org/10.1063/1.475465.Search in Google Scholar

41. Saxe, P.; Schaefer, H. F.III; Handy, N. C. Methylene Singlet-Triplet Separation. An Explicit Variational Treatment Of Many-Body Correlation Effects. J. Phys. Chem. 1981, 85, 745–747; https://doi.org/10.1021/j150607a001.Search in Google Scholar

42. Sherrill, C. D.; Van Huis, T. J.; Yamaguchi, Y.; Schaefer, H. F.III. Full Configuration Interaction Benchmarks for the X̃ 3B1, ã1A1, b̃ 1B1 and c̃ 1A1 States of Methylene. J. Mol. Struct. Theochem 1997, 400, 139–156; https://doi.org/10.1016/s0166-1280(97)90275-x.Search in Google Scholar

43. Handy, N. C.; Yamaguchi, Y.; Schaefer, H. F.III. The Diagonal Correction to the Born–Oppenheimer Approximation: Its Effect on the Singlet-Triplet Splitting of CH2 and Other Molecular Effects. J. Chem. Phys. 1986, 84, 4481–4484; https://doi.org/10.1063/1.450020.Search in Google Scholar

44. Gu, J. P.; Hirsch, G.; Buenker, R. J.; Brumm, M.; Osmann, G.; Bunker, P. R.; Jensen, P. A Theoretical Study of the Absorption Spectrum of Singlet CH2. J. Mol. Struct. 2000, 517–518, 247–264; https://doi.org/10.1016/s0022-2860(99)00256-2.Search in Google Scholar

45. O’Neil, S. V.; Schaefer, H. F.III; Bender, C. F. C2v Potential Energy Surfaces for Seven Low-Lying States of CH2. J. Chem. Phys. 1971, 55, 162–169; https://doi.org/10.1063/1.1675503.Search in Google Scholar

46. Ruscic, B.; Bross, D. H. Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects. Mol. Phys. 2021, 119, e1969046; https://doi.org/10.1080/00268976.2021.1969046.Search in Google Scholar

47. Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory; Cambridge University Press: Cambridge, 2010; pp. 1–523.10.1017/CBO9780511596834Search in Google Scholar

48. Lyakh, D. I.; Musiał, M.; Lotrich, V. F.; Bartlett, R. J. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem. Rev. 2012, 112, 182–243; https://doi.org/10.1021/cr2001417.Search in Google Scholar PubMed

49. Roothaan, C. C. J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23, 69–89; https://doi.org/10.1103/revmodphys.23.69.Search in Google Scholar

50. Pople, J. A.; Nesbet, R. K. Self-Consistent Orbitals for Radicals. J. Chem. Phys. 1954, 22, 571–572; https://doi.org/10.1063/1.1740120.Search in Google Scholar

51. Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622; https://doi.org/10.1103/physrev.46.618.Search in Google Scholar

52. Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods. J. Chem. Phys. 1966, 45, 4256–4266; https://doi.org/10.1063/1.1727484.Search in Google Scholar

53. Crawford, T. D.; Schaefer, H. F.III An Introduction to Coupled Cluster Theory for Computational Chemists. In Reviews in Computational Chemistry, 2000; pp. 33–136.10.1002/9780470125915.ch2Search in Google Scholar

54. Purvis, G. D.III; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918; https://doi.org/10.1063/1.443164.Search in Google Scholar

55. Noga, J.; Bartlett, R. J. The Full CCSDT Model for Molecular Electronic Structure. J. Chem. Phys. 1987, 86, 7041–7050; https://doi.org/10.1063/1.452353.Search in Google Scholar

56. Kucharski, S. A.; Bartlett, R. J. The Coupled-Cluster Single, Double, Triple, and Quadruple Excitation Method. J. Chem. Phys. 1992, 97, 4282–4288; https://doi.org/10.1063/1.463930.Search in Google Scholar

57. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479–483; https://doi.org/10.1016/s0009-2614(89)87395-6.Search in Google Scholar

58. Bomble, Y. J.; Stanton, J. F.; Kállay, M.; Gauss, J. Coupled-Cluster Methods Including Noniterative Corrections for Quadruple Excitations. J. Chem. Phys. 2005, 123, 054101; https://doi.org/10.1063/1.1950567.Search in Google Scholar

59. Kállay, M.; Gauss, J. Approximate Treatment of Higher Excitations in Coupled-Cluster Theory. J. Chem. Phys. 2005, 123, 214105; https://doi.org/10.1063/1.2121589.Search in Google Scholar

60. Kállay, M.; Gauss, J. Approximate Treatment of Higher Excitations in Coupled-Cluster Theory. II. Extension to General Single-Determinant Reference Functions and Improved Approaches for the Canonical Hartree-Fock Case. J. Chem. Phys. 2008, 129, 144101; https://doi.org/10.1063/1.2988052.Search in Google Scholar

61. Dunning, T. H.Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023; https://doi.org/10.1063/1.456153.Search in Google Scholar

62. Wilson, A. K.; van Mourik, T.; Dunning, T. H.Jr Gaussian Basis Sets for Use in Correlated Molecular Calculations. VI. Sextuple Zeta Correlation Consistent Basis Sets for Boron Through Neon. J. Mol. Struct. Theochem 1996, 388, 339–349; https://doi.org/10.1016/s0166-1280(96)80048-0.Search in Google Scholar

63. Woon, D. E.; Dunning, T. H.Jr Gaussian Basis Sets for Use in Correlated Molecular Calculations. V. Core-Valence Basis Sets for Boron Through Neon. J. Chem. Phys. 1995, 103, 4572–4585; https://doi.org/10.1063/1.470645.Search in Google Scholar

64. Woon, D. E.; Dunning, T. H.Jr Benchmark Calculations with Correlated Molecular Wave Functions. I. Multireference Configuration Interaction Calculations for the Second Row Diatomic Hydrides. J. Chem. Phys. 1993, 99, 1914–1929; https://doi.org/10.1063/1.465306.Search in Google Scholar

65. CFOUR, a quantum chemical program package written by Stanton, J. F.; Gauss, J.; Cheng, L.; Harding, M. E.; Matthews, D. A.; Szalay, P. G. For the current version and additional contributors, see http://www.cfour.de.Search in Google Scholar

66. Matthews, D. A.; Cheng, L.; Harding, M. E.; Lipparini, F.; Stopkowicz, S.; Jagau, T.-C.; Szalay, P. G.; Gauss, J.; Stanton, J. F. Coupled-Cluster Techniques for Computational Chemistry: The CFOUR Program Package. J. Chem. Phys. 2020, 152, 214108; https://doi.org/10.1063/5.0004837.Search in Google Scholar PubMed

67. MRCC, A Quantum Chemical Program Suite Written by; Kállay, M.; Nagy, P. R.; Mester, D.; Gyevi-Nagy, L.; Csóka, J.; Szabó, P. B.; Rolik, Z.; Samu, G.; Csontos, J.; Hégely, B.; Ganyecz, Á.; Ladjánszki, I.; Szegedy, L.; Ladóczki, B.; Petrov, K.; Farkas, M.; Mezei, P. D.; Horváth, R. A. See. www.mrcc.hu.Search in Google Scholar

68. Kállay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos, J.; Csóka, J.; Szabó, P. B.; Gyevi-Nagy, L.; Hégely, B.; Ladjánszki, I.; Szegedy, L.; Ladóczki, B.; Petrov, K.; Farkas, M.; Mezei, P. D.; Ganyecz, Á. The MRCC Program System: Accurate Quantum Chemistry from Water to Proteins. J. Chem. Phys. 2020, 152, 07410; https://doi.org/10.1063/1.5142048.Search in Google Scholar PubMed

69. Smith, D. G. A.; Burns, L. A.; Simmonett, A. C.; Parrish, R. M.; Schieber, M. C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; James, A. M.; Lehtola, S.; Misiewicz, J. P.; Scheurer, M.; Shaw, R. A.; Schriber, J. B.; Xie, Y.; Glick, Z. L.; Sirianni, D. A.; O’Brien, J. S.; Waldrop, J. M.; Kumar, A.; Hohenstein, E. G.; Pritchard, B. P.; Brooks, B. R.; Schaefer, H. F.III; Sokolov, A. Y.; Patkowski, K.; DePrince, A. E.III; Bozkaya, U.; King, R. A.; Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.4: Open-Source Software For High-Throughput Quantum Chemistry. J. Chem. Phys. 2020, 152, 184108; https://doi.org/10.1063/5.0006002.Search in Google Scholar PubMed PubMed Central

70. East, A. L. L.; Allen, W. D. The Heat of Formation of NCO. J. Chem. Phys. 1993, 99, 4638–4650; https://doi.org/10.1063/1.466062.Search in Google Scholar

71. Császár, A. G.; Allen, W. D.; Schaefer, H. F.III In Pursuit of the Ab Initio Limit for Conformational Energy Prototypes. J. Chem. Phys. 1998, 108, 9751–9764; https://doi.org/10.1063/1.476449.Search in Google Scholar

72. Allen, A. M.; Olive, L. N.; Gonzalez Franco, P. A.; Barua, S. R.; Allen, W. D.; Schaefer, H. F.III Fulminic Acid: A Quasibent Spectacle. Phys. Chem. Chem. Phys. 2024, 26, 24109–24125; https://doi.org/10.1039/d4cp02700k.Search in Google Scholar PubMed

73. Feller, D. Application of Systematic Sequences of Wave Functions to the Water Dimer. J. Chem. Phys. 1992, 96, 6104–6114; https://doi.org/10.1063/1.462652.Search in Google Scholar

74. Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. Basis-Set Convergence of Correlated Calculations on Water. J. Chem. Phys. 1997, 106, 9639–9646; https://doi.org/10.1063/1.473863.Search in Google Scholar

75. Balasubramanian, K. Relativistic Effects in Chemistry; Wiley Interscience: New York, 1997.Search in Google Scholar

76. Cowan, R. D.; Griffin, D. C. Approximate Relativistic Corrections to Atomic Radial Wave Functions. J. Opt. Soc. Am. 1976, 66, 1010–1014; https://doi.org/10.1364/josa.66.001010.Search in Google Scholar

77. Michauk, C.; Gauss, J. Perturbative Treatment of Scalar-Relativistic Effects in Coupled-Cluster Calculations of Equilibrium Geometries and Harmonic Vibrational Frequencies Using Analytic Second-Derivative Techniques. J. Chem. Phys. 2007, 127, 044106; https://doi.org/10.1063/1.2751161.Search in Google Scholar

78. Dirac, P. A. M. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. Lond. A 1929, 123, 714–733; https://doi.org/10.1098/rspa.1929.0094.Search in Google Scholar

Received: 2025-08-15
Accepted: 2025-10-01
Published Online: 2025-10-20
Published in Print: 2025-11-25

© 2025 IUPAC & De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. IUPAC Recommendations
  3. Experimental methods and data evaluation procedures for the determination of radical copolymerization reactivity ratios from composition data (IUPAC Recommendations 2025)
  4. IUPAC Technical Reports
  5. Kinetic parameters for thermal decomposition of commercially available dialkyldiazenes (IUPAC Technical Report)
  6. FAIRSpec-ready spectroscopic data collections – advice for researchers, authors, and data managers (IUPAC Technical Report)
  7. Review Articles
  8. Are the Lennard-Jones potential parameters endowed with transferability? Lessons learnt from noble gases
  9. Quantum mechanics and human dynamics
  10. Quantum chemistry and large systems – a personal perspective
  11. The organic chemist and the quantum through the prism of R. B. Woodward
  12. Relativistic quantum theory for atomic and molecular response properties
  13. A chemical perspective of the 100 years of quantum mechanics
  14. Methylene: a turning point in the history of quantum chemistry and an enduring paradigm
  15. Quantum chemistry – from the first steps to linear-scaling electronic structure methods
  16. Nonadiabatic molecular dynamics on quantum computers: challenges and opportunities
  17. Research Articles
  18. Alzheimer’s disease – because β-amyloid cannot distinguish neurons from bacteria: an in silico simulation study
  19. Molecular electrostatic potential as a guide to intermolecular interactions: challenge of nucleophilic interaction sites
  20. Photophysical properties of functionalized terphenyls and implications to photoredox catalysis
  21. Combining molecular fragmentation and machine learning for accurate prediction of adiabatic ionization potentials
  22. Thermodynamic and kinetic insights into B10H14 and B10H14 2−
  23. Quantum origin of atoms and molecules – role of electron dynamics and energy degeneracy in atomic reactivity and chemical bonding
  24. Clifford Gaussians as Atomic Orbitals for periodic systems: one and two electrons in a Clifford Torus
  25. First-principles modeling of structural and RedOx processes in high-voltage Mn-based cathodes for sodium-ion batteries
  26. Erratum
  27. Erratum to: Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0586/html
Scroll to top button