Abstract
In this mini-review I look into the physics underlying the theory of electronic structure of atoms and molecules. Quantum mechanics is needed to understand the structure of the periodic table. Special relativity is indispensable for a correct description of the chemistry of the heavy elements. With increased accuracy of quantum chemical calculations, it is natural to ask if chemistry needs more physics.
Funding source: H2020 European Research Council
Award Identifier / Grant number: 101019907
Acknowledgments
I thank Dávid Ferenc for critical reading of the manuscript.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 101019907 HAMP-vQED).
-
Data availability: Not applicable.
References
1. Hargittai, B.; Hargittai, I. Year of the Periodic Table: Mendeleev and the Others. Struct. Chem. 2019, 30, 1–7. https://doi.org/10.1007/s11224-018-1266-2.Search in Google Scholar
2. Pyykkö, P. The Physics behind Chemistry and the Periodic Table. Chem. Rev. 2012, 112, 371–384. https://doi.org/10.1021/cr200042e.Search in Google Scholar PubMed
3. Schwerdtfeger, P.; Smits, O. R.; Pyykkö, P. The Periodic Table and the Physics that Drives it. Nat. Rev. Chem. 2020, 4, 359–380. https://doi.org/10.1038/s41570-020-0195-y.Search in Google Scholar PubMed
4. Geiger, H.; Marsden, E. On a Diffuse Reflection of the α-Particles. Proc. R. Soc. Lond. - Ser. A Contain. Pap. Math. Phys. Character 1909, 82, 495–500. https://doi.org/10.1098/rspa.1909.0054.Search in Google Scholar
5. Rutherford, E. LXXIX. The Scattering of α and β Particles by Matter and the Structure of the Atom. London, Edinburgh Dublin Phil. Mag. J. Sci. 1911, 21, 669–688. https://doi.org/10.1080/14786440508637080.Search in Google Scholar
6. Rutherford, E. XLIII. The Origin of β and γ Rays from Radioactive Substances. London, Edinburgh Dublin Phil. Mag. J. Sci. 1912, 24, 453–462. https://doi.org/10.1080/14786441008637351.Search in Google Scholar
7. Moseley, H. XCIII. The High-Frequency Spectra of the Elements. London, Edinburgh Dublin Phil. Mag. J. Sci. 1913, 26, 1024–1034. https://doi.org/10.1080/14786441308635052.Search in Google Scholar
8. Moseley, H. LXXX. The High-Frequency Spectra of the Elements. Part II. London, Edinburgh Dublin Phil. Mag. J. Sci. 1914, 27, 703–713. https://doi.org/10.1080/14786440408635141.Search in Google Scholar
9. van den Broek, A. Die Radioelemente, das periodische System und die Konstitution der. Atome. Phys. Z. 1913, 14, 32–41.Search in Google Scholar
10. Thomson, J. XXIV. On the Structure of the Atom: An Investigation of the Stability and Periods of Oscillation of a Number of Corpuscles Arranged at Equal Intervals Around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure. London, Edinburgh Dublin Phil. Mag. J. Sci. 1904, 7, 237–265. https://doi.org/10.1080/14786440409463107.Search in Google Scholar
11. Thomson, J. J. XL. Cathode Rays. London, Edinburgh Dublin Phil. Mag. J. Sci. 1897, 44, 293–316. https://doi.org/10.1080/14786449708621070.Search in Google Scholar
12. Stoney, G. J. XLIX. Of the “Electron,” or Atom of Electricity. London, Edinburgh Dublin Phil. Mag. J. Sci. 1894, 38, 418–420. https://doi.org/10.1080/14786449408620653.Search in Google Scholar
13. O’Hara, J. G. George Johnstone Stoney, F. R. S. and the Concept of the Electron. Notes Rec. R. Soc. Lond. 1975, 29, 265–276. https://doi.org/10.1098/rsnr.1975.0018.Search in Google Scholar
14. Thomson, J. J. Carriers of Negative Electricity; Nobel lecture, 1906. https://www.nobelprize.org/prizes/physics/1906/thomson/lecture/.Search in Google Scholar
15. Thomson, J. J. The Atomic Theory; Clarendon Press: Oxford, 1914. https://archive.org/details/atomictheorythom00thomrich/page/n3/mode/2up.Search in Google Scholar
16. Born, M. Obituary Notice of Sir J. J. Thomson. Proc. Phys. Soc. 1941, 53, 305–310. https://archive.org/details/proceedings-of-the-physical-society_1941-05-01_53_part-3/page/n127/mode/2up.Search in Google Scholar
17. Perrin, J. Les Hypothèses Moléculaires. Rev. Sci. 1901, 15, 449–461. https://gallica.bnf.fr/ark:/12148/bpt6k215134v/f452.item.Search in Google Scholar
18. Bohr, N. I. On the Constitution of Atoms and Molecules. London, Edinburgh Dublin Phil. Mag. J. Sci. 1913, 26, 1–25. https://doi.org/10.1080/14786441308634955.Search in Google Scholar
19. Bohr, N. Atomic Structure. Nature 1921, 107, 104–107. https://doi.org/10.1038/107104a0.Search in Google Scholar
20. Kossel, W. Über Molekülbildung als Frage des Atombaus. Ann. Phys. 1916, 354, 229–362. https://doi.org/10.1002/andp.19163540302.Search in Google Scholar
21. Lewis, G. N. The Atom and the Molecule. J. Am. Chem. Soc. 1916, 38, 762–785. https://doi.org/10.1021/ja02261a002.Search in Google Scholar
22. Kohler, R.Jr. The Origin of G. N. Lewis’s Theory of the Shared Pair Bond. Hist. Stud. Phys. Sci. 1971, 3, 343–376. https://doi.org/10.2307/27757322.Search in Google Scholar
23. Bohr, N. Über die Anwendung der Quantentheorie auf den Atombau. Z. Phys. 1923, 13, 117–165. https://doi.org/10.1007/bf01328209.Search in Google Scholar
24. Mulliken, R. S. The Assignment of Quantum Numbers for Electrons in Molecules. I. Phys. Rev. 1928, 32, 186–222. https://doi.org/10.1103/physrev.32.186.Search in Google Scholar
25. Kragh, H. Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925; Oxford University Press: Oxford, 2012.10.1093/acprof:oso/9780199654987.001.0001Search in Google Scholar
26. Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im aAtom mit der Komplexstruktur der Spektren. Z. Phys. 1925, 31, 765–783. https://doi.org/10.1007/bf02980631.Search in Google Scholar
27. Curceanu, C.; Gillaspy, J. D.; Hilborn, R. C. Resource Letter SS-1: The Spin-Statistics Connection. Am. J. Phys. 2012, 80, 561–577. https://doi.org/10.1119/1.4704899.Search in Google Scholar
28. Margenau, H.; Wightman, A. Atomic and Molecular Theory since Bohr: Historical Survey. Am. J. Phys. 1944, 12, 119–130. https://doi.org/10.1119/1.1990565.Search in Google Scholar
29. Hylleraas, E. A. The Schrödinger Two-Electron Atomic Problem. Adv. Quantum Chem. 1964, 1, 1–33. https://doi.org/10.1016/S0065-3276(08)60373-1.Search in Google Scholar
30. Scerri, E. The Periodic Table: Its Story and its Significance, 2nd ed; Oxford University Press: New York, 2020.10.1093/oso/9780190914363.001.0001Search in Google Scholar
31. Hylleraas, E. A. Über den grundzustand des heliumatoms. Z. Phys. 1928, 48, 469–494. https://doi.org/10.1007/bf01340013.Search in Google Scholar
32. Hylleraas, E. A. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 1929, 54, 347–366. https://doi.org/10.1007/bf01375457.Search in Google Scholar
33. Nakashima, H.; Nakatsuji, H. Solving the Schrödinger Equation for Helium Atom and its Isoelectronic Ions with the Free Iterative Complement Interaction (ICI) Method. J. Chem. Phys. 2007, 127, 224104. https://doi.org/10.1063/1.2801981.Search in Google Scholar PubMed
34. Schwarz, W. H. E.; Rich, R. L. Theoretical Basis and Correct Explanation of the Periodic System: Review and Update. J. Chem. Educ. 2010, 87, 435–443. https://doi.org/10.1021/ed800124m.Search in Google Scholar
35. Cao, C.-S.; Hu, H.-S.; Li, J.; Schwarz, W. H. E. Physical Origin of Chemical Periodicities in the System of Elements. Pure Appl. Chem. 2019, 91, 1969–1999. https://doi.org/10.1515/pac-2019-0901.Search in Google Scholar
36. International Union of Pure and Applied Chemistry. IUPAC Compendium of Chemical Terminology – The Gold Book, 2019. https://goldbook.iupac.org/terms/view/C01248.Search in Google Scholar
37. Mulliken, R. S. Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations. Phys. Rev. 1932, 41, 49–71. https://doi.org/10.1103/physrev.41.49.Search in Google Scholar
38. Mulliken, R. S. Spectroscopy, Molecular Orbitals, and Chemical Bonding. Science 1967, 157, 13–24. https://doi.org/10.1126/science.157.3784.13.Search in Google Scholar PubMed
39. Slater, J. C. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1322. https://doi.org/10.1103/physrev.34.1293.Search in Google Scholar
40. Boys, S. F. Electronic Wave Functions II. A Calculation for the Ground State of the Beryllium Atom. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1950, 201, 125–137. https://doi.org/10.1098/rspa.1950.0047.Search in Google Scholar
41. Shavitt, I. The History and Evolution of Configuration Interaction. Mol. Phys. 1998, 94, 3–17. https://doi.org/10.1080/002689798168303.Search in Google Scholar
42. Savelyev, I. M.; Kaygorodov, M. Y.; Kozhedub, Y. S.; Malyshev, A. V.; Tupitsyn, I. I.; Shabaev, V. M. Ground State of Superheavy Elements with 120 ≤ Z ≤ 170: Systematic Study of the Electron-Correlation, Breit, and QED Effects. Phys. Rev. A 2023, 107, 042803. https://doi.org/10.1103/physreva.107.042803.Search in Google Scholar
43. Rohrlich, F. Classical Charged Particles; Westview Press: New York, 1990.Search in Google Scholar
44. Mendelejeff, D. Die periodische Gesetzmëssigkeit der chemischen Elemente. Ann. Chem. Pharm. Supplbd. 1871, 8, 133–229.Search in Google Scholar
45. Goldschmidt, V. M.; Barth, T.; Lunde, G. Geochemische Verteilungsgesetzte der Elemente. 5. Isomorphie und Polymorphie der Sesquioxyde. Die Lanthaniden-Kontraktion und ihre Konsequenzen. Norske Vidensk. Akad. Skrifter I Mat. Naturv. Kl. 1925, 7, 1.Search in Google Scholar
46. Tiesinga, E.; Mohr, P. J.; Newell, D. B.; Taylor, B. N. CODATA Recommended Values of the Fundamental Physical Constants: 2018. Rev. Mod. Phys. 2021, 93, 025010. https://doi.org/10.1103/revmodphys.93.025010.Search in Google Scholar
47. Tuinstra, F. Rømer and the Finite Speed of Light. Phys. Today 2004, 57, 16–17. https://doi.org/10.1063/1.1878320.Search in Google Scholar
48. Pyykkö, P. Relativistic Quantum Chemistry. Adv. Quantum Chem. 1978, 11, 353–409. https://doi.org/10.1016/S0065-3276(08)60241-5.Search in Google Scholar
49. Pyykko, P.; Desclaux, J. P. Relativity and the Periodic System of Elements. Acc. Chem. Res. 1979, 12, 276–281. https://doi.org/10.1021/ar50140a002.Search in Google Scholar
50. Pyykko, P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563–594. https://doi.org/10.1021/cr00085a006.Search in Google Scholar
51. Burke, V. M.; Grant, I. P. The Effect of Relativity on Atomic Wave Functions. Proc. Phys. Soc. 1967, 90, 297. https://doi.org/10.1088/0370-1328/90/2/301.Search in Google Scholar
52. Romaniello, P.; de Boeij, P. L. The Role of Relativity in the Optical Response of Gold within the Time-Dependent Current-Density-Functional Theory. J. Chem. Phys. 2005, 122, 164303. https://doi.org/10.1063/1.1884985.Search in Google Scholar PubMed
53. Steenbergen, K. G.; Pahl, E.; Schwerdtfeger, P. Accurate, Large-Scale Density Functional Melting of Hg: Relativistic Effects Decrease Melting Temperature by 160 K. J. Phys. Chem. Lett. 2017, 8, 1407–1412. https://doi.org/10.1021/acs.jpclett.7b00354.Search in Google Scholar PubMed
54. Ahuja, R.; Blomqvist, A.; Larsson, P.; Pyykkö, P.; Zaleski-Ejgierd, P. Relativity and the Lead-Acid Battery. Phys. Rev. Lett. 2011, 106, 018301. https://doi.org/10.1103/physrevlett.106.018301.Search in Google Scholar PubMed
55. Saue, T. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem 2011, 12, 3077. https://doi.org/10.1002/cphc.201100682.Search in Google Scholar PubMed
56. Lloyd, D. R. On the Lanthanide and “Scandinide” Contractions. J. Chem. Educ. 1986, 63, 502. https://doi.org/10.1021/ed063p502.Search in Google Scholar
57. Bagus, P. S.; Lee, Y. S.; Pitzer, K. S. Effects of Relativity and of the Lanthanide Contraction on the Atoms from Hafnium to Bismuth. Chem. Phys. Lett. 1975, 33, 408–411. https://doi.org/10.1016/0009-2614(75)85741-1.Search in Google Scholar
58. Fossgaard, O.; Gropen, O.; Eliav, E.; Saue, T. Bonding in the Homologous Series CsAu, CsAg, and CsCu Studied at the 4-Component Density Functional Theory and Coupled Cluster Levels. J. Chem. Phys. 2003, 119, 9355–9363. https://doi.org/10.1063/1.1615953.Search in Google Scholar
59. Dirac, P. A. M. The´orie du positron. (French) [Theory of the positron]. In Structure et propriétés des noyaux atomiques. Rapports et discussions du septieme conseil de physique tenu à Bruxelles du 22 au 29 octobre 1933 sous les auspices de l’institut international de physique Solvay. Publies par la commission administrative de l’institut; de Physique Solvay, I. I., Ed., 1934; pp. 203–230.Search in Google Scholar
60. Tamm, I. Über die Wechselwirkung der freien Elektronen mit der Strahlung nach der Diracsehen Theorie des Elektrons und nach der qQuantenelektrodynamik. Z. Phys. 1930, 62, 545–568. https://doi.org/10.1007/bf01339679.Search in Google Scholar
61. Oppenheimer, J. R. On the Theory of Electrons and Protons. Phys. Rev. 1930, 35, 562–563. https://doi.org/10.1103/physrev.35.562.Search in Google Scholar
62. Dirac, P. A. M. A Theory of Electrons and Protons. Proc. R. Soc. Lond. - Ser. A Contain. Pap. Math. Phys. Character 1930, 126, 360–365. https://doi.org/10.1098/rspa.1930.0013.Search in Google Scholar
63. Dirac, P. A. M. Quantised Singularities in the Electromagnetic Field. Proc. R. Soc. Lond. - Ser. A Contain. Pap. Math. Phys. Character 1931, 133, 60–72. https://doi.org/10.1098/rspa.1931.0130.Search in Google Scholar
64. Anderson, C. D. The Positive Electron. Phys. Rev. 1933, 43, 491–494. https://doi.org/10.1103/physrev.43.491.Search in Google Scholar
65. Breit, G. An Interpretation of Dirac’s Theory of the Electron. Proc. Natl. Acad. Sci. 1928, 14, 553–559. https://doi.org/10.1073/pnas.14.7.553.Search in Google Scholar PubMed PubMed Central
66. Moss, R. E. Advanced Molecular Quantum Mechanics; Chapmann and Hall: London, 1973.10.1007/978-94-009-5688-9Search in Google Scholar
67. Schrödinger, E. Über die kräftefreie bewegung in der relativistischen quantenmechanik. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1930, 24, 418–428.Search in Google Scholar
68. Mattuck, R. D. A Guide to Feynman Diagrams in the Many-Body Problem, 2nd ed., Dover Books on Physics and Chemistry; Dover Publications: New York, 1992.Search in Google Scholar
69. Gell-Mann, M. The Interpretation of the New Particles as Displaced Charge Multiplets. Il Nuovo Cimento 1956, 4, 848. https://doi.org/10.1007/bf02748000.Search in Google Scholar
70. Schwarzschild, K. Zur Elektrodynamik: I. Zwei Formen des Princips der kleinsten Action in der Elektrontheorie. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1903, 126–131. https://eudml.org/doc/58546.Search in Google Scholar
71. Kramers, H. A. The Use of Charge-Conjugated Wave-Functions in the Hole-Theory of the Electron. Proc. Roy. Acad. Amsterdam 1937, 40, 814. https://dwc.knaw.nl/DL/publications/PU00017118.pdf.Search in Google Scholar
72. Darwin, C. G. The Dynamical Motion of Charged Particles. Phil. Mag. 1920, 39, 537–551. https://doi.org/10.1080/14786440508636066.Search in Google Scholar
73. Jackson, J. D. Classical Electrodynamics; Wiley: New York, 1999.Search in Google Scholar
74. Norman, P.; Ruud, K.; Saue, T. Principles and Practices of Molecular Properties: Theory, Modeling and Simulations; Wiley: Hoboken, NJ, 2018.10.1002/9781118794821Search in Google Scholar
75. Breit, G. The Effect of Retardation on the Interaction of Two Electrons. Phys. Rev. 1929, 34, 553–573. https://doi.org/10.1103/physrev.34.553.Search in Google Scholar
76. Saue, T. Spin-Interactions and the Non-Relativistic Limit of Electrodynamics. Adv. Quantum Chem. 2005, 48, 383–405. https://doi.org/10.1016/S0065-3276(05)48020-X.Search in Google Scholar
77. Heisenberg, W. The Physical Principles of the Quantum Theory; Dover, 1930. https://archive.org/details/in.ernet.dli.2015.166273/page/n167/mode/2up?q=physic.Search in Google Scholar
78. Dirac, P. A. M. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1929, 123, 714–733. https://doi.org/10.1098/rspa.1929.0094.Search in Google Scholar
79. Kutzelnigg, W. Perspective on “Quantum Mechanics of Many-Electron System” – Dirac PAM (1929) Proc R Soc Lond Ser A 123: 714. Theor. Chem. Acc. 2000, 103, 182–186. https://doi.org/10.1007/s002149900029.Search in Google Scholar
80. Lévy-Leblond, J. M. Nonrelativistic Particles and Wave Equations. Commun. Math. Phys. 1967, 6, 286–311. https://doi.org/10.1007/bf01646020.Search in Google Scholar
81. Le Bellac, M.; Lévy-Leblond, J. M. Galilean Electromagnetism. Il Nuovo Cimento B 1973, 14, 217–234. https://doi.org/10.1007/bf02895715.Search in Google Scholar
82. Kutzelnigg, W. Chapter 12 – Perturbation Theory of Relativistic Effects. In Relativistic Electronic Structure Theory; Schwerdtfeger, P., Ed.; Elsevier: Amsterdam, Vol. 11, 2002; pp 664–757.10.1016/S1380-7323(02)80038-3Search in Google Scholar
83. Kutzelnigg, W. Fundamentals of Nonrelativistic and Relativistic Theory of NMR and EPR Parameters. In Calculation of NMR and EPR Parameters; John Wiley & Sons, Ltd: Weinheim, 2004, Chap. 5; pp. 43–82.10.1002/3527601678.ch5Search in Google Scholar
84. Safronova, M.; Budker, D.; DeMille, D.; Kimball, D. F. J.; Derevianko, A.; Clark, C. W. Search for New Physics with Atoms and Molecules. Rev. Mod. Phys. 2018, 90, 025008. https://doi.org/10.1103/revmodphys.90.025008.Search in Google Scholar
85. Bakasov, A.; Ha, T.-K.; Quack, M. Ab Initio Calculation of Molecular Energies Including Parity Violating Interactions. J. Chem. Phys. 1998, 109, 7263–7285. https://doi.org/10.1063/1.477360.Search in Google Scholar
86. Sallembien, Q.; Bouteiller, L.; Crassous, J.; Raynal, M. Possible Chemical and Physical Scenarios Towards Biological Homochirality. Chem. Soc. Rev. 2022, 51, 3436–3476. https://doi.org/10.1039/d1cs01179k.Search in Google Scholar PubMed
87. Berger, R. Chapter 4 – Parity-Violation Effects in Molecules. In Relativistic Electronic Structure Theory; Schwerdtfeger, P., Ed.; Elsevier: Amsterdam, Vol. 14, 2004; pp 188–288.10.1016/S1380-7323(04)80031-1Search in Google Scholar
88. Bast, R.; Koers, A.; Gomes, A. S. P.; Iliaš, M.; Visscher, L.; Schwerdtfeger, P.; Saue, T. Analysis of Parity Violation in Chiral Molecules. Phys. Chem. Chem. Phys. 2011, 13, 864–876. https://doi.org/10.1039/c0cp01483d.Search in Google Scholar PubMed
89. Cournol, A.; Manceau, M.; Pierens, M.; Lecordier, L.; Tran, D.; Santagata, R.; Argence, B.; Goncharov, A.; Lopez, O.; Abgrall, M.; Le Coq, Y.; Le Targat, R.; Alvarez Martinez, H.; Lee, W.; Xu, D.; Pottie, P.-E.; Hendricks, R.; Wall, T.; Bieniewska, J.; Sauer, B.; Tarbutt, M.; Amy-Klein, A.; Tokunaga, S.; Darquié, B. A New Experiment to Test Parity Symmetry in Cold Chiral Molecules Using Vibrational Spectroscopy. Quantum Electron. 2019, 49, 288. https://doi.org/10.1070/qel16880.Search in Google Scholar
90. Berger, R.; Stohner, J. Parity Violation. WIREs Comput. Mol. Sci. 2019, 9, e1396. https://doi.org/10.1002/wcms.1396.Search in Google Scholar
91. Greiner, W.; Peitz, H. Ist das Vakuum wirklich leer? Phys. Unserer Zeit 1978, 9, 165–183. https://doi.org/10.1002/piuz.19780090602.Search in Google Scholar
92. Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem., Int. Ed. 2012, 51, 1592–1596. https://doi.org/10.1002/anie.201107033.Search in Google Scholar PubMed
93. Ebbesen, T. W.; Rubio, A.; Scholes, G. D. Introduction: Polaritonic Chemistry. Chem. Rev. 2023, 123, 12037–12038. https://doi.org/10.1021/acs.chemrev.3c00637.Search in Google Scholar PubMed
94. Ruggenthaler, M.; Sidler, D.; Rubio, A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem. Rev. 2023, 123, 11191–11229. https://doi.org/10.1021/acs.chemrev.2c00788.Search in Google Scholar PubMed PubMed Central
95. Sakurai, J. J. Advanced Quantum Mechanics; Addison-Wesley: Reading, Massachusetts, 1967.Search in Google Scholar
96. Craig, D. P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Dover: Mineola, New York, 1998.Search in Google Scholar
97. Norman, P.; Bishop, D. M.; Jensen, H. J. Aa.; Oddershede, J. Near-Resonant Absorption in the Time-Dependent Self-Consistent Field and Multiconfigurational Self-Consistent Field Approximations. J. Chem. Phys. 2001, 115, 10323–10334. https://doi.org/10.1063/1.1415081.Search in Google Scholar
98. Bander, M.; Itzykson, C. Group Theory and the Hydrogen Atom (I). Rev. Mod. Phys. 1966, 38, 330–345. https://doi.org/10.1103/revmodphys.38.330.Search in Google Scholar
99. Lamb, W. E.; Retherford, R. C. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 1947, 72, 241–243. https://doi.org/10.1103/physrev.72.241.Search in Google Scholar
100. Hubbell, J. Electron-Positron Pair Production by Photons: A Historical Overview. Radiat. Phys. Chem. 2006, 75, 614–623. https://doi.org/10.1016/j.radphyschem.2005.10.008.Search in Google Scholar
101. Yerokhin, V. A.; Shabaev, V. M. Lamb Shift of n = 1 and n = 2 States of Hydrogen-Like Atoms, 1 ≤ Z ≤ 110. J. Phys. Chem. Ref. Data 2015, 44, 033103. https://doi.org/10.1063/1.4927487.Search in Google Scholar
102. Wilczek, F.; Devine, B. Fantastic Realities; World Scientific: Singapore, 2006.10.1142/6019Search in Google Scholar
103. Wald, R. Advanced Classical Electromagnetism; Princeton University Press: New York, 2022.Search in Google Scholar
104. Milonni, P. W. The Quantum Vacuum; Academic Press, Inc.: Boston, 1994.Search in Google Scholar
105. Dyson, F. J. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 1949, 75, 486–502. https://doi.org/10.1103/physrev.75.486.Search in Google Scholar
106. Furry, W. H. On Bound States and Scattering in Positron Theory. Phys. Rev. 1951, 81, 115–124. https://doi.org/10.1103/physrev.81.115.Search in Google Scholar
107. Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic Structure Theory; John Wiley & Sons, Ltd: Chichester, 2000.10.1002/9781119019572Search in Google Scholar
108. Crawford, T. D.; Schaefer, H. An Introduction to Coupled Cluster Theory for Computational Chemists. Rev. Comput. Chem. 2000, 14, 33–136. https://doi.org/10.1002/9780470125915.ch2.Search in Google Scholar
109. Wick, G. C. The Evaluation of the Collision Matrix. Phys. Rev. 1950, 80, 268–272. https://doi.org/10.1103/physrev.80.268.Search in Google Scholar
110. Dirac, P. A. M. Relativistic Quantum Mechanics. Proc. R. Soc. Lond. - Ser. A Contain. Pap. Math. Phys. Character 1932, 136, 453–464.10.1098/rspa.1932.0094Search in Google Scholar
111. Sunaga, A.; Salman, M.; Saue, T. 4-Component Relativistic Hamiltonian with Effective QED Potentials for Molecular Calculations. J. Chem. Phys. 2022, 157, 164101. https://doi.org/10.1063/5.0116140.Search in Google Scholar PubMed
112. Blundell, S. A.; Mohr, P. J.; Johnson, W. R.; Sapirstein, J. Evaluation of Two-Photon Exchange Graphs for Highly Charged Heliumlike Ions. Phys. Rev. A 1993, 48, 2615–2626. https://doi.org/10.1103/physreva.48.2615.Search in Google Scholar PubMed
113. Uehling, E. A. Polarization Effects in the Positron Theory. Phys. Rev. 1935, 48, 55–63. https://doi.org/10.1103/physrev.48.55.Search in Google Scholar
114. Pyykkö, P.; Zhao, L.-B. Search for Effective Local Model Potentials for Simulation of Quantum Electrodynamic Effects in Relativistic Calculations. J. Phys. B 2003, 36, 1469–1478. https://doi.org/10.1088/0953-4075/36/8/302.Search in Google Scholar
115. Flambaum, V. V.; Ginges, J. S. M. Radiative Potential and Calculations of QED Radiative Corrections to Energy Levels and Electromagnetic Amplitudes in Many-Electron Atoms. Phys. Rev. A 2005, 72, 052115. https://doi.org/10.1103/physreva.72.052115.Search in Google Scholar
116. Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A. Model Operator Approach to the Lamb Shift Calculations in Relativistic Many-Electron Atoms. Phys. Rev. A 2013, 88, 012513. https://doi.org/10.1103/physreva.88.012513.Search in Google Scholar
117. Pašteka, L.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy Between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold. Phys. Rev. Lett. 2017, 118, 023002. https://doi.org/10.1103/physrevlett.118.023002.Search in Google Scholar PubMed
118. Brown, C. M.; Ginter, M. L. Absorption Spectrum of Au i Between 1300 and 1900 Å. J. Opt. Soc. Am. 1978, 68, 243–246. https://doi.org/10.1364/josa.68.000243.Search in Google Scholar
119. Andersen, T.; Haugen, H. K.; Hotop, H. Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 1999, 28, 1511–1533. https://doi.org/10.1063/1.556047.Search in Google Scholar
120. Pyykkö, P.; Tokman, M.; Labzowsky, L. N. Estimated Valence-Level Lamb Shifts for Group 1 and Group 11 Metal Atoms. Phys. Rev. A 1998, 57, R689–R692. https://doi.org/10.1103/physreva.57.r689.Search in Google Scholar
121. Pyykkö, P. Davidson Lecture, Delivered for University of North Texas for 25 October 2013. http://www.chem.helsinki.fi/∼pyykko/Videos/UNT.mp4. AuCN is discussed at 47:44 of the video.Search in Google Scholar
122. Zaleski-Ejgierd, P.; Patzschke, M.; Pyykkö, P. Structure and Bonding of the MCN Molecules, M = Cu, Ag, Au, Rg. J. Chem. Phys. 2008, 128, 224303. https://doi.org/10.1063/1.2937148.Search in Google Scholar PubMed
123. Grant Hill, J.; Mitrushchenkov, A. O.; Peterson, K. A. Ab Initio Ro-Vibrational Spectroscopy of the Group 11 Cyanides: CuCN, AgCN, and AuCN. J. Chem. Phys. 2013, 138, 134314. https://doi.org/10.1063/1.4798638.Search in Google Scholar PubMed
124. Okabayashi, T.; Okabayashi, E. Y.; Koto, F.; Ishida, T.; Tanimoto, M. Detection of Free Monomeric Silver (I) and Gold (I) Cyanides, AgCN and AuCN: Microwave Spectra and Molecular Structure. J. Am. Chem. Soc. 2009, 131, 11712–11718. https://doi.org/10.1021/ja808153g.Search in Google Scholar PubMed
125. Saue, T.; Bast, R.; Gomes, A. S. P.; Jensen, H. J. Aa.; Visscher, L.; Aucar, I. A.; di Remigio, R.; Dyall, K. G.; Eliav, E.; Fasshauer, E.; Fleig, T.; Halbert, L.; Hedegård, E. D.; Helmich-Paris, B.; Iliaš, M.; Jacob, C. R.; Knecht, S.; Laerdahl, J. K.; Vidal, M. L.; Nayak, M. K.; Olejniczak, M.; Olsen, J. M. H.; Pernpointner, M.; Senjean, B.; Shee, A.; Sunaga, A.; van Stralen, J. N. P. The DIRAC Code for Relativistic Molecular Calculations. J. Chem. Phys. 2020, 152, 204104; https://doi.org/10.1063/5.0004844.Search in Google Scholar PubMed
126. Skripnikov, L. V. Approaching meV Level for Transition Energies in the Radium Monofluoride Molecule RaF and Radium Cation Ra+ by Including Quantum-Electrodynamics Effects. J. Chem. Phys. 2021, 154, 201101. https://doi.org/10.1063/5.0053659.Search in Google Scholar PubMed
127. Demaison, J.; Boggs, J. E.; Császár, A. G. Equilibrium Molecular Structures: From Spectroscopy to Quantum Chemistry; CRC Press: Boca Raton, 2016.10.1201/b10374Search in Google Scholar
128. Liu, W.; Lindgren, I. “Going Beyond” No-Pair Relativistic Quantum Chemistry. J. Chem. Phys. 2013, 139, 014108. https://doi.org/10.1063/1.4811795.Search in Google Scholar PubMed
129. Toulouse, J. Relativistic Density-Functional Theory Based on Effective Quantum Electrodynamics. SciPost Chem. 2021, 1, 002. https://doi.org/10.21468/scipostchem.1.1.002.Search in Google Scholar
130. Mátyus, E.; Ferenc, D.; Jeszenszki, P.; Margócsy, Á. The Bethe-Salpeter QED Wave Equation for Bound-State Computations of Atoms and Molecules. ACS Phys. Chem. Au 2023, 3, 222–240. https://doi.org/10.1021/acsphyschemau.2c00062.Search in Google Scholar PubMed PubMed Central
131. Flynn, D. J.; Quiney, H. M.; Grant, I. P. Vacuum Polarization in Molecules. I. Uehling Interaction. Phys. Rev. A 2025, 111, 042810. https://doi.org/10.1103/physreva.111.042810.Search in Google Scholar
132. Boys, S. F. Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1950, 200, 542–554.10.1098/rspa.1950.0036Search in Google Scholar
133. Hall, G. G. Samuel Francis Boys 1911–1972. Mol. Phys. 1996, 88, 309–314. https://doi.org/10.1080/00268979609482418.Search in Google Scholar
134. Salman, M.; Saue, T. Calculating the Many-Potential Vacuum Polarization Density of the Dirac Equation in the Finite-Basis Approximation. Phys. Rev. A 2023, 108, 012808. https://doi.org/10.1103/physreva.108.012808.Search in Google Scholar
135. Ferenc, D.; Salman, M.; Saue, T. Gaussian Basis Set Approach to One-Loop Self-Energy. Phys. Rev. A 2025, 111, L040802. https://doi.org/10.1103/physreva.111.l040802.Search in Google Scholar
136. Lehn, J.-M. Perspectives in Chemistry – Aspects of Adaptive Chemistry and Materials. Angew. Chem., Int. Ed. 2015, 54, 3276–3289. https://doi.org/10.1002/anie.201409399.Search in Google Scholar PubMed
137. Feynman, R. P.; Leighton, R. B.; Sands, M. L. The Feynman Lectures on Physics, Vol. 3; Addison-Wesley: Reading, MA, USA, 1963–1965; p. xii + 513.Search in Google Scholar
© 2025 IUPAC & De Gruyter