Abstract
Quantum chemical computations generate output files with data. The processing of these data generates results which are presented in a target document, such as a manuscript or supporting information (SI). Several tools and techniques can be employed to facilitate the transfer of data which, otherwise, can be time-consuming with a large number of files. However, depending on the user’s technical knowledge or expertise with the software, additional time has to be invested to set up the software or use the tools. In addition, to the best of the authors’ knowledge, the tools currently available do not provide an option to transfer the data from the output files directly to the target document without the use of custom scripts. The ExcelAutomat tool (Laloo et al., J. Comput. Aided Mol. Des. 2017, 31, 667 and Laloo et al., J. Comp. Chem. 2019, 40, 3) is spreadsheet-based and was developed in-house to facilitate the steps involved in the processing of computational files. The tool was adapted to facilitate the generation of SI in an update of ExcelAutomat 1.4. A graphical user interface was designed where the options for the generation of SI can be defined. ExcelAutomat 1.4 is compatible with Microsoft Excel and the open-source LibreOffice Calc. The extensible tool supports various software packages and parameters by interfacing with the cclib library and through built-in codes. The tool provides a method to transfer data from output files directly to a Microsoft Word or LibreOffice Writer document and can reduce the number of steps, tools or technical knowledge needed to generate SI, especially for users who are familiar with Microsoft Excel or LibreOffice Calc.
Article note:
A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2021) held on-line, 9–13 August 2021.
Funding source: University of Mauritius
Acknowledgements
The authors acknowledge facilities from the University of Mauritius. NS acknowledges the Higher Education Commission of Mauritius.
-
Research funding: This work was supported by funding from the University of Mauritius (RA016).
References
[1] W. P. Oziminski. Tetrahedron 69, 3197 (2013), https://doi.org/10.1016/j.tet.2013.02.057.Suche in Google Scholar
[2] T. A. Hamlin, B. van Beek, L. P. Wolters, F. M. Bickelhaupt. Chem. Eur. J. 24, 5927 (2018), https://doi.org/10.1002/chem.201706075.Suche in Google Scholar PubMed PubMed Central
[3] T. A. Hamlin, M. Swart, F. M. Bickelhaupt. ChemPhysChem 19, 1315 (2018), https://doi.org/10.1002/cphc.201701363.Suche in Google Scholar PubMed PubMed Central
[4] S. C. Williams. J. Agric. Food Inf. 17, 11 (2016).10.1080/10496505.2015.1120213Suche in Google Scholar
[5] Microsoft Word. Available at https://www.microsoft.com/en/microsoft-365/word.Suche in Google Scholar
[6] LibreOffice Writer. Available at https://www.libreoffice.org/discover/writer.Suche in Google Scholar
[7] R. Dennington, T. A. Keith, J. M. Millam. GaussView, Version 6, Semichem Inc., Shawnee Mission, KS (2016).Suche in Google Scholar
[8] G. A. Zhurko, D. A. Zhurko. ChemCraft, Version 1.7 (2013). Available from: http://www.chemcraftprog.com.Suche in Google Scholar
[9] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison. J. Cheminf. 4, 17 (2012), https://doi.org/10.1186/1758-2946-4-17.Suche in Google Scholar PubMed PubMed Central
[10] G. Schaftenaar, J. H. Noordik. J. Comput. Aided Mol. Des. 14, 123 (2000), https://doi.org/10.1023/a:1008193805436.10.1023/A:1008193805436Suche in Google Scholar
[11] G. Schaftenaar, E. Vlieg, G. Vriend. J. Comput. Aided Mol. Des. 31, 789 (2017), https://doi.org/10.1007/s10822-017-0042-5.Suche in Google Scholar PubMed PubMed Central
[12] R. Taylor, C. F. Macrae. Acta Crystallogr. B 57, 815 (2001), https://doi.org/10.1107/s010876810101360x.Suche in Google Scholar PubMed
[13] I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor. Acta Crystallogr. B 58, 389 (2002), https://doi.org/10.1107/s0108768102003324.Suche in Google Scholar PubMed
[14] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek. J. Appl. Crystallogr. 39, 453 (2006), https://doi.org/10.1107/s002188980600731x.Suche in Google Scholar
[15] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood. J. Appl. Crystallogr. 41, 466 (2008), https://doi.org/10.1107/s0021889807067908.Suche in Google Scholar
[16] C. Y. Legault. CYLview, Version 1.0b, Université de Sherbrooke (2009). Available at http://www.cylview.org.Suche in Google Scholar
[17] Chemissian. Available at http://www.chemissian.com/.Suche in Google Scholar
[18] M. Álvarez-Moreno, C. de Graaf, N. López, F. Maseras, J. M. Poblet, C. Bo. J. Chem. Inf. Model. 55, 95 (2015), doi:https://doi.org/10.1021/ci500593j.Suche in Google Scholar PubMed
[19] J. Rodríguez-Guerra Pedregal, P. Gómez-Orellana, J.-D. Maréchal. J. Chem. Inf. Model. 58, 561 (2018), doi:https://doi.org/10.1021/acs.jcim.7b00714.Suche in Google Scholar PubMed
[20] N. M. O’Boyle, A. L. Tenderholt, K. M. Langner. J. Comput. Chem. 29, 839 (2008), doi:https://doi.org/10.1002/jcc.20823.Suche in Google Scholar PubMed
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, D. J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. MontgomeryJr., E. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, N. Kudin, N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, C. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. Millam, M. Klene, E. Knox, B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, E. Stratmann, O. Yazyev, J. Austin, R. Cammi, C. Pomelli, W. Ochterski, L. Martin, K. Morokuma, G. Zakrzewski, A. Voth, P. Salvador, J. Dannenberg, S. Dapprich, D. Daniels, O. Farkas, B. Foresman, V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2009).Suche in Google Scholar
[22] F. Neese. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012), https://doi.org/10.1002/wcms.81.Suche in Google Scholar
[23] J. Z. A. Laloo, N. Laloo, L. Rhyman, P. Ramasami. J. Comput. Aided Mol. Des. 31, 667 (2017), https://doi.org/10.1007/s10822-017-0031-8.Suche in Google Scholar PubMed
[24] J. Z. A. Laloo, N. Savoo, N. Laloo, L. Rhyman, P. Ramasami. J. Comput. Chem. 40, 619 (2019), doi:https://doi.org/10.1002/jcc.25546.Suche in Google Scholar PubMed
[25] J. Z. A. Laloo, N. Savoo, N. Laloo, L. Rhyman, P. Ramasami. In 6th Annual International Conference on Chemistry, Chemical Engineering and Chemical Process (CCECP 2018) Proceedings, pp. 72–76, Global Science & Technology Forum (GSTF), Singapore (2018).Suche in Google Scholar
[26] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. MontgomeryJr. J. Comput. Chem. 14, 1347 (1993), doi:https://doi.org/10.1002/jcc.540141112.Suche in Google Scholar
[27] M. S. Gordon, M. W. Schmidt. In Theory and Applications of Computational Chemistry, C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria (Eds.), 1167, Elsevier, Amsterdam (2005).10.1016/B978-044451719-7/50084-6Suche in Google Scholar
[28] GAMESS. Available at http://www.msg.ameslab.gov/gamess/index.html.Suche in Google Scholar
[29] Microsoft Excel. Available at https://www.microsoft.com/en/microsoft-365/excel.Suche in Google Scholar
[30] ExcelPython. Available at http://ericremoreynolds.github.io/excelpython/.Suche in Google Scholar
[31] LibreOffice Calc. Available at https://www.libreoffice.org/discover/calc.Suche in Google Scholar
[32] Windows 7. Available at https://www.microsoft.com/en-us/windows.Suche in Google Scholar
[33] D. Hallooman, M. Ríos-Gutiérrez, L. Rhyman, I. A. Alswaidan, L. R. Domingo Theor. Chem. Acc. 139, 124 (2020), doi:https://doi.org/10.1007/s00214-020-02637-5.Suche in Google Scholar
© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode