Startseite Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc

  • Ingrid Ruíz , Jose A. Gómez und Laura García EMAIL logo
Veröffentlicht/Copyright: 24. März 2022

Abstract

From the receptor-binding domain (RBD) of the SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19), a RBD-hFc fusion protein was obtained at the Center of Molecular Immunology (Havana, Cuba). This fusion protein was used in the construction of a diagnostic device for COVID-19 called Ultramicroenzyme-Linked Immunosorbent Assay (UMELISA)-SARS-CoV-2-IgG and it is currently been used in the studies of biological activity of the Cuban vaccine Abdala (CIGB-66). In this work, Circular Dichroism (CD) is used to characterize this protein. Using Far Ultraviolet Circular Dichroism (FAR-UV CD), it was determined that the protein has a secondary structure in the form of a sheet-β fundamentally. Using this technique, a thermodynamic study was carried out and it was determined that the melting temperature (Tm) of the protein is 71.5 °C. Information about the tertiary structure of the protein was obtained using Near Ultraviolet Circular Dichroism (NEAR-UV CD) and Molecular Fluorescence; they indicates that the protein has a three-dimensional folding associated with the aromatic amino acids in its structure, where tryptophan (Trp) is located inside the folded structure of the protein while tyrosine (Tyr) is exposed to the solvent.


Article note:

A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2021) held on-line, 9–13 August 2021.



Corresponding author: Laura García, Faculty of Chemistry, University of Havana, 10400, Havana, Cuba, e-mail:

Annex

Table 5:

Secondary structure and its content in % of the RBD-hFc protein spectra obtained at a temperature range of 20–95 °C, with intervals of 5 °C (Results of deconvolution analysis of the spectra in Figure 5 using the BeStSel).

Temperature α-helix β-sheet Random coil
20 5.1 49.9 45.0
25 7.4 50.1 42.5
30 5.8 49.9 44.3
35 5.7 49.1 45.2
40 8.3 48.6 43.1
45 6.4 51 42.6
50 7.5 52.3 40.2
55 4.2 51 44.8
60 5.6 51.5 42.9
65 8.9 47.6 43.5
70 10.4 43.7 45.9
75 5.1 45.4 49.5
80 5.9 45.7 48.4
85 11.3 44.2 44.5
90 7.1 46.5 46.4
95 6.8 45.6 47.6

References

1. I. Fleitas-Estévez. Andar la salud 24, 20 (2020).10.5944/educxx1.28660Suche in Google Scholar

2. W. Tai, L. He, X. Zhang, J. Pu, D. Voronin, S. Jiang, Y. Zhou, J. Du. Nat. Cell. Mol. Immunol. 17, 613 (2020), doi:https://doi.org/10.1038/s41423-020-0400-4.Suche in Google Scholar

3. J. Lan, J. Lan, J. Ge, J. Yu, S. Shan. Nature 581, 215 (2020), https://doi.org/10.1038/s41586-020-2180-5.Suche in Google Scholar

4. D. Correa, C. Ramos. Afr. J. Biochem. Res. 3, 164 (2009).Suche in Google Scholar

5. M. Parr, O. Montacir, H. Montacir. J. Pharmaceut. Biomed. Anal. 130, 366 (2016), https://doi.org/10.1016/j.jpba.2016.05.028.Suche in Google Scholar

6. G. Siligardi, R. Hussain. Methods Mol. Biol. 12, 255 (2015), https://doi.org/10.1007/978-1-4939-2230-7_14.Suche in Google Scholar

7. N. Greenfield. Nat. Protoc. 1, 2876 (2006), https://doi.org/10.1038/nprot.2006.202.Suche in Google Scholar

8. P. C. Kahn. Methods Enzymol. 61, 339 (1979), https://doi.org/10.1016/0076-6879(79)61018-2.Suche in Google Scholar

9. E. Mata Martínez. in Circular Dichroism, Instituto de Biotecnología-UNAM, México (2013).Suche in Google Scholar

10. Joseph R. Lakowicz. in Principles of Fluorescence Spectroscopy, Springer, Boston, MA, 3rd ed. (2006).10.1007/978-0-387-46312-4Suche in Google Scholar

11. J. Vivian, P. Callis. Biophys. J. 80, 2093 (2001), https://doi.org/10.1016/s0006-3495(01)76183-8.Suche in Google Scholar

12. G. A. Caputo, E. London. Biochemistry 42, 3275 (2003), https://doi.org/10.1021/bi026697d.Suche in Google Scholar PubMed

13. Jasco, Corporation. Jasco, Jasco Corporation (2021), [Online]. Available: https://jascoinc.com/products/spectroscopy/circular-dichroism/j-1000-series-models/j-1500-circular-dichroism-spectrophotometer/ (accessed Oct 28, 2021).Suche in Google Scholar

14. A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y.-H. Lee, Y. Goto, M. Réfrégiers, J. Kardos. Nucleic Acids Res. 46, 315 (2018), doi:https://doi.org/10.1093/nar/gky497.Suche in Google Scholar

15. S. M. Kelly, N. C. Price. Biochim. Biophys. Acta 13, 161 (1997), https://doi.org/10.1016/s0167-4838(96)00190-2.Suche in Google Scholar

16. Argentinian AntiCovid Consortium. Sci. Rep. 10, 11 (2020).10.1038/s41598-019-56153-zSuche in Google Scholar PubMed PubMed Central

17. V. Joshi, T. Shivach, N. Yadav, A. S. Rathore. Anal. Chem. 86, 11606 (2014), https://doi.org/10.1021/ac503140j.Suche in Google Scholar PubMed

18. S. Tentin, F. Prendergast, S. Venyaminov. Anal. Chem. 321, 183 (2003).10.1016/S0003-2697(03)00458-5Suche in Google Scholar

19. Y. He, J. Qi, L. Xiao, L. Shen, W. Yu, T. Hu. Eng. Life Sci. 21, 453 (2021), doi:https://doi.org/10.1002/elsc.202000106.Suche in Google Scholar PubMed PubMed Central

20. A. Lehninger. Principles of Biochemistry, OMEGA, Barcelona, 5ta ed. (2007).Suche in Google Scholar

21. S. Venyaminov, K. S. Vassilenko. Anal. Biochem. 222, 176 (1994), https://doi.org/10.1006/abio.1994.1470.Suche in Google Scholar PubMed

22. S. Kelly, N. Price. Curr. Protein Pept. Sci. 1, 349 (2000), https://doi.org/10.2174/1389203003381315.Suche in Google Scholar PubMed

23. S. Kelly, T. Jess, N. Price. Biochim. Biophys. Acta 17, 119 (2005), https://doi.org/10.1016/j.bbapap.2005.06.005.Suche in Google Scholar PubMed

24. B. Ranjbar, P. Gill. Chem. Biol. Drug Des. 74, 101 (2009), https://doi.org/10.1111/j.1747-0285.2009.00847.x.Suche in Google Scholar PubMed

25. J. Garcia-Segura, J. Gavilanes. Instrumental Analysis Techniques in Biochemistry, Sintesis, Madrid (1999).Suche in Google Scholar

26. Y. Chen, M. Barkley. Biochem. Mol. Biol. Educ. 37, 9976 (1998), https://doi.org/10.1021/bi980274n.Suche in Google Scholar PubMed

27. S. Benjwal, S. Verma, K. H. Röhm, O. Gursky. Protein Sci. 15, 635 (2006), https://doi.org/10.1110/ps.051917406.Suche in Google Scholar PubMed PubMed Central

Published Online: 2022-03-24
Published in Print: 2022-07-26

© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-1014/html
Button zum nach oben scrollen