Home Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
Article
Licensed
Unlicensed Requires Authentication

Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)

  • Sai Manoj N. V. T. Gorantla , Sudip Pan , Kartik Chandra Mondal EMAIL logo and Gernot Frenking EMAIL logo
Published/Copyright: March 14, 2022

Abstract

A series of possible precursors for generating C2 with the general formula Me3E–C2–I(Ph)FBF3 [E = C (1), Si (2), and Ge (3)] has been theoretically investigated using quantum chemical calculations. The equilibrium geometries of all species show a linear E–C2–I+ backbone. The inspection of the electronic structure of the Me3E–C2 bond by energy decomposition analysis coupled with the natural orbital for chemical valence (EDA-NOCV) method suggests a combination of electron sharing C–C σ-bond and v weak π-dative bond between Me3C and C2 fragments in the doublet state for species 1 (E = C). For species 2 (Si) and 3 (Ge), the analysis reveals σ-dative Me3E–C2 bonds (E = Si, Ge; Me3E←C2) resulting from the interaction of singly charged (Me3E)+ and (C2–IPh(BF4)) fragments in their singlet states. The C2–I bond is diagnosed as an electron sharing σ-bond in all three species, 1, 2 and 3.


Corresponding authors: Kartik Chandra Mondal, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India, e-mail: ; and Gernot Frenking, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany; and Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China, e-mail:

Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2021) held on-line, 9–13 August 2021.


Funding source: Deutsche Forschungsgemeinschaft

  1. Research funding: S.M. thanks CSIR for SRF fellowship. K.C.M thanks SERB for the ECR grant (ECR/2016/000890) and IIT Madras for seed grant. GF thanks the Deutsche Forschungsgemeinschaft for financial support.

References

[1] M. Calvin. Chemical evolution: molecular evolution towards the origin of living systems on the earth and elsewhere, Oxford, Oxford University Press (1969).Search in Google Scholar

[2] M. Kaźmierczak, M. Schmidt, J. Krełowski. Proc. Int. Astron. Union 4, 45 (2008).10.1017/S1743921308021145Search in Google Scholar

[3] W. Swan. Trans. R. Soc. Edinb. 21, 411 (1857). https://doi.org/10.1017/s0080456800032233.Search in Google Scholar

[4] J. H. Black, A. Dalgarno. ApJS 34, 405 (1977). https://doi.org/10.1086/190455.Search in Google Scholar

[5] S. R. Federman, W. T. HuntressJr. APJ (Acta Pathol. Jpn.) 338, 140 (1989). https://doi.org/10.1086/167187.Search in Google Scholar

[6] W. Jackson. J. Photochem. 5, 107 (1976). https://doi.org/10.1016/0047-2670(76)85014-9.Search in Google Scholar

[7] J. F. Babb, R. T. Smyth, B. M. McLaughlin. Astrophys. J. 876, 38 (2019). https://doi.org/10.3847/1538-4357/ab1088.Search in Google Scholar

[8] H. Kopfermann, H. Schweitzer. Z. Phys. 61, 87 (1930). https://doi.org/10.1007/bf01340292.Search in Google Scholar

[9] M. Martin. J. Photochem. Photobiol., A 66, 263 (1992).10.1016/1010-6030(92)80001-CSearch in Google Scholar

[10] P. S. Skell, R. F. Harris. J. Am. Chem. Soc. 88, 5933 (1966). https://doi.org/10.1021/ja00976a045.Search in Google Scholar

[11] P. S. Skell, J. H. Plonka. J. Am. Chem. Soc. 92, 5620 (1970). https://doi.org/10.1021/ja00722a014.Search in Google Scholar

[12] P. S. Skell, J. J. Havel, M. J. McGlinchey. Acc. Chem. Res. 6, 97 (1973). https://doi.org/10.1021/ar50063a003.Search in Google Scholar

[13] D. Danovich, P. C. Hiberty, W. Wu, H. S. Rzepa, S. Shaik. Chem. Eur. J. 20, 6220 (2014). https://doi.org/10.1002/chem.201400356.Search in Google Scholar PubMed

[14] M. Hermann, G. Frenking. Chem. Eur. J. 22, 4100 (2016). https://doi.org/10.1002/chem.201503762.Search in Google Scholar PubMed

[15] S. Shaik, D. Danovich, B. Braida, P. C. Hiberty. Chem. Eur. J. 22, 4116 (2016). https://doi.org/10.1002/chem.201600011.Search in Google Scholar PubMed

[16] G. Frenking, M. Hermann. Chem. Eur. J. 22, 18975 (2016). https://doi.org/10.1002/chem.201601382.Search in Google Scholar PubMed

[17] S. Shaik, D. Danovich, B. Braida, P. C. Hiberty. Chem. Eur. J. 22, 18977 (2016). https://doi.org/10.1002/chem.201602840.Search in Google Scholar PubMed

[18] W. Zou, D. Cremer. Chem. Eur. J. 22, 4087 (2016). https://doi.org/10.1002/chem.201503750.Search in Google Scholar PubMed

[19] M. Piris, X. Lopez, J. M. Ugalde. Chem. Eur. J. 22, 4109 (2016). https://doi.org/10.1002/chem.201504491.Search in Google Scholar PubMed

[20] D. L. Cooper, R. Ponec, M. Kohout. Mol. Phys. 114, 1270 (2016). https://doi.org/10.1080/00268976.2015.1112925.Search in Google Scholar

[21] W. Zou, D. Cremer. Chem. Eur. J. 22, 4087 (2016). https://doi.org/10.1002/chem.201503750.Search in Google Scholar

[22] D. W. O. de Sousa, M. A. C. Nascimento. J. Chem. Theor. Comput. 12, 2234 (2016). https://doi.org/10.1021/acs.jctc.6b00055.Search in Google Scholar

[23] S. M. N. V. T. Gorantla, S. Pan, K. C. Mondal, G. Frenking. Chem. Eur J. 26, 14211 (2020). https://doi.org/10.1002/chem.202003064.Search in Google Scholar

[24] D. J. D. Wilson, J. L. Dutton. Chem. Eur. J. 19, 13626 (2013). https://doi.org/10.1002/chem.201302715.Search in Google Scholar

[25] Y. Wang, G. H. Robinson. Dalton Trans. 41, 337 (2012). https://doi.org/10.1039/c1dt11165e.Search in Google Scholar

[26] G. Frenking, M. Hermann, D. M. Andrada, N. Holzmann. Chem. Soc. Rev. 45, 1129 (2015).10.1039/C5CS00815HSearch in Google Scholar

[27] G. Frenking, R. Tonner, S. Klein, N. Takagi, T. Shimizu, A. Krapp, K. K. Pandey, P. Parameswaran. Chem. Soc. Rev. 43, 5106 (2014). https://doi.org/10.1039/c4cs00073k.Search in Google Scholar

[28] B. Niepötter, R. Herbst-Irmer, D. Kratzert, P. P. Samuel, K. C. Mondal, H. W. Roesky, P. Jerabek, G. Frenking, D. Stalke. Angew. Chem. Int. Ed. 53, 2766 (2014).10.1002/anie.201308609Search in Google Scholar

[29] H. J. Bestmann, H. Behl, M. Bremer. Angew. Chem. 101, 1303 (1989), Angew. Chem. Int. Ed. Engl. 28, 1219 (1989). https://doi.org/10.1002/ange.19891010941.Search in Google Scholar

[30] H. J. Bestmann, W. Frank, C. Moll, A. Pohlschmidt, T. Clark, A. Göller. Angew. Chem. Int. Ed. 37, 338 (1998). https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<338::aid-anie338>3.0.co;2-5.10.1002/(SICI)1521-3773(19980216)37:3<338::AID-ANIE338>3.0.CO;2-5Search in Google Scholar

[31] Y. Li, K. C. Mondal, P. P. Samuel, H. Zhu, C. M. Orben, S. Panneerselvam, B. Dittrich, B. Schwederski, W. Kaim, T. Mondal, D. Koley, H. W. Roesky. Angew. Chem. Int. Ed. 53, 4168 (2014). https://doi.org/10.1002/anie.201310975.Search in Google Scholar

[32] L. Jin, M. Melaimi, L. Liu, G. Bertrand. Org. Chem. Front. 1, 351 (2014). https://doi.org/10.1039/c4qo00072b.Search in Google Scholar

[33] D. Wu, Y. Li, R. Ganguly, R. Kinjo. Chem. Commun. 50, 12378 (2014). https://doi.org/10.1039/c4cc05886k.Search in Google Scholar PubMed

[34] S. M. N. V. T. Gorantla, S. Pan, K. C. Mondal, G. Frenking. J. Phys. Chem. A 125, 291 (2021). https://doi.org/10.1021/acs.jpca.0c09951.Search in Google Scholar PubMed

[35] K. Miyamoto, S. Narita, Y. Masumoto, T. Hashishin, T. Osawa, M. Kimura, M. Ochiai, M. Uchiyama. Nat. Commun. 11, 2134 (2020). https://doi.org/10.1038/s41467-020-16025-x.Search in Google Scholar PubMed PubMed Central

[36] A. D. Becke. Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/physreva.38.3098.Search in Google Scholar PubMed

[37] J. P. Perdew. Phys. Rev. B 33, 8822 (1986). https://doi.org/10.1103/physrevb.33.8822.Search in Google Scholar PubMed

[38] S. Grimme, S. Ehrlich, L. Goerigk. J. Comput. Chem. 32, 1456 (2011). https://doi.org/10.1002/jcc.21759.Search in Google Scholar PubMed

[39] S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed

[40] F. Weigend, R. Ahlrichs. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed

[41] F. Weigend. Phys. Chem. Chem. Phys. 8, 1057 (2006). https://doi.org/10.1039/b515623h.Search in Google Scholar PubMed

[42] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta Jr, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT (2016).Search in Google Scholar

[43] F. Weinhold, C. Landis. Valency and Bonding, A Natural Bond Orbital Donor – Acceptor Perspective, Cambridge University Press, Cambridge (2005).Search in Google Scholar

[44] C. R. Landis, F. Weinhold. The NBO view of chemical bonding. in The Chemical Bond: Fundamental Aspects of Chemical Bonding, G. Frenking, S. Shaik (Eds.), pp. 91–120, Wiley (2014).10.1002/9783527664696.ch3Search in Google Scholar

[45] E. D. Glendening, C. R. Landis, F. Weinhold. J. Comput. Chem. 34, 1429 (2013). https://doi.org/10.1002/jcc.23266.Search in Google Scholar

[46] K. B. Wiberg. Tetrahedron 24, 1083 (1968). https://doi.org/10.1016/0040-4020(68)88057-3.Search in Google Scholar

[47] T. Ziegler, A. Rauk. Theor. Chim. Acta 46, 1 (1977). https://doi.org/10.1007/bf02401406.Search in Google Scholar

[48] M. Mitoraj, A. Michalak. Organometallics 26, 6576 (2007). https://doi.org/10.1021/om700754n.Search in Google Scholar

[49] M. Mitoraj, A. Michalak. J. Mol. Model. 14, 681 (2008). https://doi.org/10.1007/s00894-008-0276-1.Search in Google Scholar PubMed

[50] A. Michalak, M. Mitoraj, T. J. Ziegler. Phys. Chem. A. 112, 1933 (2008).10.1021/jp075460uSearch in Google Scholar PubMed

[51] M. P. Mitoraj, A. Michalak, T. Ziegler. J. Chem. Theory Comput. 5, 962 (2009).10.1021/ct800503dSearch in Google Scholar PubMed

[52] ADF2017, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.Search in Google Scholar

[53] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler. J. Comput. Chem. 22, 931 (2001). https://doi.org/10.1002/jcc.1056.Search in Google Scholar

[54] E. van Lenthe, E. J. Baerends. J. Comput. Chem. 24, 1142 (2003). https://doi.org/10.1002/jcc.10255.Search in Google Scholar PubMed

[55] E. van Lenthe, E. J. Baerends, J. G. Snijders. J. Chem. Phys. 99, 4597 (1993). https://doi.org/10.1063/1.466059.Search in Google Scholar

[56] E. van Lenthe, E. J. Baerends, J. G. Snijders. J. Chem. Phys. 101, 9783 (1994). https://doi.org/10.1063/1.467943.Search in Google Scholar

[57] G. Frenking, F. M. Bickelhaupt. The Chemical Bond 1. Fundamental Aspects of Chemical Bonding, chap. The EDA Perspective of Chemical Bonding, Wiley-VCH, Weinheim, Vol. 121 (2014).10.1002/9783527664696Search in Google Scholar

[58] L. M. Zhao, von Hopffgarten, D. M. Andrada, G. Frenking. WIREs Comput. Mol. Sci. 8, 1345 (2018). https://doi.org/10.1002/wcms.1345.Search in Google Scholar

[59] L. Zhao, M. Hermann, W. H. E. Schwarz, G. Frenking. Nat. Rev. Chem. 3, 48 (2019). https://doi.org/10.1038/s41570-018-0060-4.Search in Google Scholar

[60] L. Zhao, S. Pan, N. Holzmann, P. Schwerdtfeger, G. Frenking. Chem. Rev. 119, 8781 (2019). https://doi.org/10.1021/acs.chemrev.8b00722.Search in Google Scholar PubMed

[61] P. Politzer, J. S. Murray, T. Clark. J. Mol. Model. 21, 52 (2015). https://doi.org/10.1007/s00894-015-2585-5.Search in Google Scholar PubMed

[62] W. Yang, K. E. Krantz, L. A. Freeman, D. Dickie, A. Molino, G. Frenking, S. Pan, D. J. D. Wilson, R. J. GilliardJr. Angew. Chem. Int. Ed. 59, 3850 (2020). https://doi.org/10.1002/anie.201909627.Search in Google Scholar PubMed PubMed Central

[63] G. Deng, S. Pan, G. Wang, L. Zhao, M. Zhou, G. Frenking. Angew. Chem. Int. Ed. 59, 10603 (2020). https://doi.org/10.1002/anie.202002621.Search in Google Scholar PubMed PubMed Central

[64] S. Pan, G. Frenking. Angew. Chem. Int. Ed. 59, 8756 (2020). https://doi.org/10.1002/anie.202000229.Search in Google Scholar PubMed

[65] L. Zhao, S. Pan, M. Zhou, G. Frenking. Science 365, eaay5021 (2019). https://doi.org/10.1126/science.aay5021.Search in Google Scholar PubMed

[66] R. Saha, S. Pan, P. K. Chattaraj, G. Merino. Dalton Trans. 49, 1056 (2020). https://doi.org/10.1039/c9dt04213j.Search in Google Scholar PubMed

[67] J. Andrés, P. W. Ayers, R. A. Boto, R. Carbó-Dorca, H. Chermette, J. Cioslowski, J. Contreras-García, D. L. Cooper, G. Frenking, C. Gatti, F. Heidar-Zadeh, L. Joubert, Á. Martín. Pendás, E. Matito, I. Mayer, A. J. Misquitta, Y. Mo, J. Pilmé, P. L. A. Popelier, M. Rahm, E. Ramos-Cordoba, P. Salvador, W. H. E. Schwarz, S. Shahbazian, B. Silvi, M. Solà, K. Szalewicz, V. Tognetti, F. Weinhold, É. L. Zins. J. Comput. Chem. 40, 2248 (2019).10.1002/jcc.26003Search in Google Scholar PubMed

[68] K. C. Mondal, H. W. Roesky, B. Dittrich, N. Holzmann, M. Hermann, G. Frenking, A. Meents. J. Am. Chem. Soc. 135, 15990 (2013). https://doi.org/10.1021/ja4072139.Search in Google Scholar PubMed

[69] J. Z. Xiong, D. Jiang, C. E. Dixon, K. M. Baines, T. K. Sham. Can. J. Chem. 74, 2229 (1996). https://doi.org/10.1139/v96-251.Search in Google Scholar

[70] R. H. Walker, K. A. Miller, S. L. Scott, Z. T. Cygan, J. M. Bartolin, J. W. Kampf, M. M. B. Holl. Organometallics 28, 2744 (2009). https://doi.org/10.1021/om900182z.Search in Google Scholar

[71] H. Zhang, P. H. Toy. Adv. Synth. Catal. 363, 215 (2021). https://doi.org/10.1002/adsc.202001019.Search in Google Scholar

[72] G. Frenking, M. Hermann, D. M. Andrada, N. Holzmann. Chem. Soc. Rev. 44, 1129 (2015).10.1039/C5CS00815HSearch in Google Scholar

[73] Y. Xiong, S. Yao, S. Inoue, J. D. Epping, M. Driess. Angew. Chem. Int. Ed. 52, 7147 (2013), Angew. Chem. 125, 7287 (2013). https://doi.org/10.1002/anie.201302537.Search in Google Scholar PubMed

[74] G. Frenking, R. Tonner, S. Klein, N. Takagi, T. Shimizu, A. Krapp, K. K. Pandey, P. Parameswaran. Chem. Soc. Rev. 43, 5106 (2014). https://doi.org/10.1039/c4cs00073k.Search in Google Scholar PubMed

[75] B. Niepçtter, R. Herbst-Irmer, D. Kratzert, P. P. Samuel, K. C. Mondal, H. W. Roesky, P. Jerabek, G. Frenking, D. Stalke. Angew. Chem. Int. Ed. 53, 2766 (2014), Angew. Chem. 126, 2806 (2014).10.1002/anie.201308609Search in Google Scholar PubMed

[76] Y. Xiong, S. Yao, G. Tan, S. Inoue, M. Driess. J. Am. Chem. Soc. 135, 5004 (2013). https://doi.org/10.1021/ja402477w.Search in Google Scholar PubMed

[77] H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas. Science 336, 1420 (2012). https://doi.org/10.1126/science.1221138.Search in Google Scholar PubMed

[78] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. SchaeferIII, P. v. R. Schleyer, G. H. Robinson. Science 321, 1069 (2008). https://doi.org/10.1126/science.1160768.Search in Google Scholar PubMed

[79] A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking. Angew. Chem. Int. Ed. 48, 9701 (2009), Angew. Chem. 121, 9881 (2009). https://doi.org/10.1002/anie.200905495.Search in Google Scholar PubMed

[80] C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch. Chem. Commun. 48, 9955 (2012). https://doi.org/10.1039/c2cc35228a.Search in Google Scholar PubMed

[81] R. Appel, R. Schçllhorn. Angew. Chem. Int. Ed. Engl. 3, 805 (1964), Angew. Chem. 76, 991 (1964). https://doi.org/10.1002/anie.196408051.Search in Google Scholar

[82] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. SchaeferIII, P. v. R. Schleyer, G. H. Robinson. J. Am. Chem. Soc. 130, 14970 (2008). https://doi.org/10.1021/ja807828t.Search in Google Scholar PubMed

[83] M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. SchaeferIII, P. v. R. Schleyer, G. H. Robinson. Chem. Eur. J. 16, 432 (2010). https://doi.org/10.1002/chem.200902840.Search in Google Scholar PubMed

[84] R. Kinjo, B. Donnadieu, G. Bertrand. Angew. Chem. Int. Ed. 49, 5930 (2010), Angew. Chem. 122, 6066 (2010).10.1002/anie.201002889Search in Google Scholar PubMed

[85] M. Hermann, G. Frenking. Chem. Eur. J. 23, 3347 (2017). https://doi.org/10.1002/chem.201604801.Search in Google Scholar PubMed

[86] D. C. Georgiou, L. Zhao, D. J. D. Wilson, G. Frenking, J. L. Dutton. Chem. Eur. J. 23, 2926 (2017). https://doi.org/10.1002/chem.201605495.Search in Google Scholar PubMed

[87] Z. Wu, J. Xu, L. Sokolenko, Y. L. Yagupolskii, R. Feng, Q. Liu, Y. Lu, L. Zhao, I. Fernández, G. Frenking, T. Trabelsi, J. S. Francisco, X. Zeng. Chem. Eur. J. 23, 16566 (2017). https://doi.org/10.1002/chem.201703161.Search in Google Scholar PubMed

[88] D. M. Andrada, J. L. Casalz-Sainz, A. M. Pendás, G. Frenking. Chem. Eur. J. 24, 9083 (2018). https://doi.org/10.1002/chem.201800680.Search in Google Scholar PubMed

[89] R. Saha, S. Pan, G. Merino, P. K. Chattaraj. Angew. Chem. Int. Ed. 58, 8372 (2019). https://doi.org/10.1002/anie.201900992.Search in Google Scholar PubMed

[90] Q. Wang, S. Pan, Y. Wu, G. Deng, G. Wang, L. Zhao, M. Zhou, G. Frenking. Angew. Chem. Int. Ed. 58, 17365 (2019). https://doi.org/10.1002/anie.201908572.Search in Google Scholar PubMed PubMed Central

[91] K. Dyduch, M. P. Mitoraj, A. Michalak. J. Mol. Model. 19, 2747 (2013). https://doi.org/10.1007/s00894-012-1591-0.Search in Google Scholar PubMed PubMed Central

[92] F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie. J. Am. Chem. Soc. 83, 3539 (1961). https://doi.org/10.1021/ja01477a052.Search in Google Scholar

[93] R. Tonner, G. Frenking. Angew. Chem. Int. Ed. 46, 8695 (2007). https://doi.org/10.1002/anie.200701632.Search in Google Scholar PubMed

[94] C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand. Angew. Chem. Int. Ed. 47, 3206 (2008). https://doi.org/10.1002/anie.200705620.Search in Google Scholar PubMed

[95] A. Fürstner, M. Alcarazo, R. Goddard, C. W. Lehmann. Angew. Chem. Int. Ed. 47, 3210 (2008).10.1002/anie.200705798Search in Google Scholar PubMed

[96] R. Tonner, F. Öxler, B. Neumüller, W. Petz, G. Frenking. Angew. Chem. Int. Ed. 45, 8038 (2006), Angew. Chem. 118, 8206 (2006).10.1002/anie.200602552Search in Google Scholar PubMed

[97] N. V. Sidgwick. The Electronic Theory of Valency, Clarendon, Oxford (1927).Search in Google Scholar

[98] D. Himmel, I. Krossing, A. Schnepf. Angew. Chem., Int. Ed. 53, 370 (2014). https://doi.org/10.1002/anie.201300461.Search in Google Scholar PubMed

[99] G. Frenking. Angew. Chem. Int. Ed. 53, 6040 (2014). https://doi.org/10.1002/anie.201311022.Search in Google Scholar PubMed

[100] D. Himmel, I. Krossing, A. Schnepf. Angew. Chem. Int. Ed. 53, 6047 (2014). https://doi.org/10.1002/anie.201403078.Search in Google Scholar PubMed

[101] S. Yu. Varshavskii. Russ. J. Gen. Chem. 50, 406 (1980).Search in Google Scholar

[102] S. Yu. Varshavskii. Zh. Obshch. Khim. 50, 514 (1980).Search in Google Scholar

[103] B. A. Laws, S. T Gibson, B. R Lewis, R. W. Field. Nat. Commun. 10, 5199 (2019). https://doi.org/10.1038/s41467-019-13039-y.Search in Google Scholar PubMed PubMed Central

[104] T.-F. Leung, D. Jiang, M.-C. Wu, D. Xiao, W.-M. Ching, G. P. A. Yap, T. Yang, L. Zhao, T.-G. Ong, G. Frenking. Nat. Chem. 13, 89 (2021). https://doi.org/10.1038/s41557-020-00579-w.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-1102).


Published Online: 2022-03-14
Published in Print: 2022-07-26

© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-1102/html
Scroll to top button