Abstract
A series of possible precursors for generating C2 with the general formula Me3E–C2–I(Ph)FBF3 [E = C (1), Si (2), and Ge (3)] has been theoretically investigated using quantum chemical calculations. The equilibrium geometries of all species show a linear E–C2–I+ backbone. The inspection of the electronic structure of the Me3E–C2 bond by energy decomposition analysis coupled with the natural orbital for chemical valence (EDA-NOCV) method suggests a combination of electron sharing C–C σ-bond and v weak π-dative bond between Me3C and C2 fragments in the doublet state for species 1 (E = C). For species 2 (Si) and 3 (Ge), the analysis reveals σ-dative Me3E–C2 bonds (E = Si, Ge; Me3E←C2) resulting from the interaction of singly charged (Me3E)+ and (C2–IPh(BF4))− fragments in their singlet states. The C2–I bond is diagnosed as an electron sharing σ-bond in all three species, 1, 2 and 3.
Funding source: Deutsche Forschungsgemeinschaft
-
Research funding: S.M. thanks CSIR for SRF fellowship. K.C.M thanks SERB for the ECR grant (ECR/2016/000890) and IIT Madras for seed grant. GF thanks the Deutsche Forschungsgemeinschaft for financial support.
References
[1] M. Calvin. Chemical evolution: molecular evolution towards the origin of living systems on the earth and elsewhere, Oxford, Oxford University Press (1969).Search in Google Scholar
[2] M. Kaźmierczak, M. Schmidt, J. Krełowski. Proc. Int. Astron. Union 4, 45 (2008).10.1017/S1743921308021145Search in Google Scholar
[3] W. Swan. Trans. R. Soc. Edinb. 21, 411 (1857). https://doi.org/10.1017/s0080456800032233.Search in Google Scholar
[4] J. H. Black, A. Dalgarno. ApJS 34, 405 (1977). https://doi.org/10.1086/190455.Search in Google Scholar
[5] S. R. Federman, W. T. HuntressJr. APJ (Acta Pathol. Jpn.) 338, 140 (1989). https://doi.org/10.1086/167187.Search in Google Scholar
[6] W. Jackson. J. Photochem. 5, 107 (1976). https://doi.org/10.1016/0047-2670(76)85014-9.Search in Google Scholar
[7] J. F. Babb, R. T. Smyth, B. M. McLaughlin. Astrophys. J. 876, 38 (2019). https://doi.org/10.3847/1538-4357/ab1088.Search in Google Scholar
[8] H. Kopfermann, H. Schweitzer. Z. Phys. 61, 87 (1930). https://doi.org/10.1007/bf01340292.Search in Google Scholar
[9] M. Martin. J. Photochem. Photobiol., A 66, 263 (1992).10.1016/1010-6030(92)80001-CSearch in Google Scholar
[10] P. S. Skell, R. F. Harris. J. Am. Chem. Soc. 88, 5933 (1966). https://doi.org/10.1021/ja00976a045.Search in Google Scholar
[11] P. S. Skell, J. H. Plonka. J. Am. Chem. Soc. 92, 5620 (1970). https://doi.org/10.1021/ja00722a014.Search in Google Scholar
[12] P. S. Skell, J. J. Havel, M. J. McGlinchey. Acc. Chem. Res. 6, 97 (1973). https://doi.org/10.1021/ar50063a003.Search in Google Scholar
[13] D. Danovich, P. C. Hiberty, W. Wu, H. S. Rzepa, S. Shaik. Chem. Eur. J. 20, 6220 (2014). https://doi.org/10.1002/chem.201400356.Search in Google Scholar PubMed
[14] M. Hermann, G. Frenking. Chem. Eur. J. 22, 4100 (2016). https://doi.org/10.1002/chem.201503762.Search in Google Scholar PubMed
[15] S. Shaik, D. Danovich, B. Braida, P. C. Hiberty. Chem. Eur. J. 22, 4116 (2016). https://doi.org/10.1002/chem.201600011.Search in Google Scholar PubMed
[16] G. Frenking, M. Hermann. Chem. Eur. J. 22, 18975 (2016). https://doi.org/10.1002/chem.201601382.Search in Google Scholar PubMed
[17] S. Shaik, D. Danovich, B. Braida, P. C. Hiberty. Chem. Eur. J. 22, 18977 (2016). https://doi.org/10.1002/chem.201602840.Search in Google Scholar PubMed
[18] W. Zou, D. Cremer. Chem. Eur. J. 22, 4087 (2016). https://doi.org/10.1002/chem.201503750.Search in Google Scholar PubMed
[19] M. Piris, X. Lopez, J. M. Ugalde. Chem. Eur. J. 22, 4109 (2016). https://doi.org/10.1002/chem.201504491.Search in Google Scholar PubMed
[20] D. L. Cooper, R. Ponec, M. Kohout. Mol. Phys. 114, 1270 (2016). https://doi.org/10.1080/00268976.2015.1112925.Search in Google Scholar
[21] W. Zou, D. Cremer. Chem. Eur. J. 22, 4087 (2016). https://doi.org/10.1002/chem.201503750.Search in Google Scholar
[22] D. W. O. de Sousa, M. A. C. Nascimento. J. Chem. Theor. Comput. 12, 2234 (2016). https://doi.org/10.1021/acs.jctc.6b00055.Search in Google Scholar
[23] S. M. N. V. T. Gorantla, S. Pan, K. C. Mondal, G. Frenking. Chem. Eur J. 26, 14211 (2020). https://doi.org/10.1002/chem.202003064.Search in Google Scholar
[24] D. J. D. Wilson, J. L. Dutton. Chem. Eur. J. 19, 13626 (2013). https://doi.org/10.1002/chem.201302715.Search in Google Scholar
[25] Y. Wang, G. H. Robinson. Dalton Trans. 41, 337 (2012). https://doi.org/10.1039/c1dt11165e.Search in Google Scholar
[26] G. Frenking, M. Hermann, D. M. Andrada, N. Holzmann. Chem. Soc. Rev. 45, 1129 (2015).10.1039/C5CS00815HSearch in Google Scholar
[27] G. Frenking, R. Tonner, S. Klein, N. Takagi, T. Shimizu, A. Krapp, K. K. Pandey, P. Parameswaran. Chem. Soc. Rev. 43, 5106 (2014). https://doi.org/10.1039/c4cs00073k.Search in Google Scholar
[28] B. Niepötter, R. Herbst-Irmer, D. Kratzert, P. P. Samuel, K. C. Mondal, H. W. Roesky, P. Jerabek, G. Frenking, D. Stalke. Angew. Chem. Int. Ed. 53, 2766 (2014).10.1002/anie.201308609Search in Google Scholar
[29] H. J. Bestmann, H. Behl, M. Bremer. Angew. Chem. 101, 1303 (1989), Angew. Chem. Int. Ed. Engl. 28, 1219 (1989). https://doi.org/10.1002/ange.19891010941.Search in Google Scholar
[30] H. J. Bestmann, W. Frank, C. Moll, A. Pohlschmidt, T. Clark, A. Göller. Angew. Chem. Int. Ed. 37, 338 (1998). https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<338::aid-anie338>3.0.co;2-5.10.1002/(SICI)1521-3773(19980216)37:3<338::AID-ANIE338>3.0.CO;2-5Search in Google Scholar
[31] Y. Li, K. C. Mondal, P. P. Samuel, H. Zhu, C. M. Orben, S. Panneerselvam, B. Dittrich, B. Schwederski, W. Kaim, T. Mondal, D. Koley, H. W. Roesky. Angew. Chem. Int. Ed. 53, 4168 (2014). https://doi.org/10.1002/anie.201310975.Search in Google Scholar
[32] L. Jin, M. Melaimi, L. Liu, G. Bertrand. Org. Chem. Front. 1, 351 (2014). https://doi.org/10.1039/c4qo00072b.Search in Google Scholar
[33] D. Wu, Y. Li, R. Ganguly, R. Kinjo. Chem. Commun. 50, 12378 (2014). https://doi.org/10.1039/c4cc05886k.Search in Google Scholar PubMed
[34] S. M. N. V. T. Gorantla, S. Pan, K. C. Mondal, G. Frenking. J. Phys. Chem. A 125, 291 (2021). https://doi.org/10.1021/acs.jpca.0c09951.Search in Google Scholar PubMed
[35] K. Miyamoto, S. Narita, Y. Masumoto, T. Hashishin, T. Osawa, M. Kimura, M. Ochiai, M. Uchiyama. Nat. Commun. 11, 2134 (2020). https://doi.org/10.1038/s41467-020-16025-x.Search in Google Scholar PubMed PubMed Central
[36] A. D. Becke. Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/physreva.38.3098.Search in Google Scholar PubMed
[37] J. P. Perdew. Phys. Rev. B 33, 8822 (1986). https://doi.org/10.1103/physrevb.33.8822.Search in Google Scholar PubMed
[38] S. Grimme, S. Ehrlich, L. Goerigk. J. Comput. Chem. 32, 1456 (2011). https://doi.org/10.1002/jcc.21759.Search in Google Scholar PubMed
[39] S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed
[40] F. Weigend, R. Ahlrichs. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed
[41] F. Weigend. Phys. Chem. Chem. Phys. 8, 1057 (2006). https://doi.org/10.1039/b515623h.Search in Google Scholar PubMed
[42] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta Jr, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT (2016).Search in Google Scholar
[43] F. Weinhold, C. Landis. Valency and Bonding, A Natural Bond Orbital Donor – Acceptor Perspective, Cambridge University Press, Cambridge (2005).Search in Google Scholar
[44] C. R. Landis, F. Weinhold. The NBO view of chemical bonding. in The Chemical Bond: Fundamental Aspects of Chemical Bonding, G. Frenking, S. Shaik (Eds.), pp. 91–120, Wiley (2014).10.1002/9783527664696.ch3Search in Google Scholar
[45] E. D. Glendening, C. R. Landis, F. Weinhold. J. Comput. Chem. 34, 1429 (2013). https://doi.org/10.1002/jcc.23266.Search in Google Scholar
[46] K. B. Wiberg. Tetrahedron 24, 1083 (1968). https://doi.org/10.1016/0040-4020(68)88057-3.Search in Google Scholar
[47] T. Ziegler, A. Rauk. Theor. Chim. Acta 46, 1 (1977). https://doi.org/10.1007/bf02401406.Search in Google Scholar
[48] M. Mitoraj, A. Michalak. Organometallics 26, 6576 (2007). https://doi.org/10.1021/om700754n.Search in Google Scholar
[49] M. Mitoraj, A. Michalak. J. Mol. Model. 14, 681 (2008). https://doi.org/10.1007/s00894-008-0276-1.Search in Google Scholar PubMed
[50] A. Michalak, M. Mitoraj, T. J. Ziegler. Phys. Chem. A. 112, 1933 (2008).10.1021/jp075460uSearch in Google Scholar PubMed
[51] M. P. Mitoraj, A. Michalak, T. Ziegler. J. Chem. Theory Comput. 5, 962 (2009).10.1021/ct800503dSearch in Google Scholar PubMed
[52] ADF2017, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.Search in Google Scholar
[53] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler. J. Comput. Chem. 22, 931 (2001). https://doi.org/10.1002/jcc.1056.Search in Google Scholar
[54] E. van Lenthe, E. J. Baerends. J. Comput. Chem. 24, 1142 (2003). https://doi.org/10.1002/jcc.10255.Search in Google Scholar PubMed
[55] E. van Lenthe, E. J. Baerends, J. G. Snijders. J. Chem. Phys. 99, 4597 (1993). https://doi.org/10.1063/1.466059.Search in Google Scholar
[56] E. van Lenthe, E. J. Baerends, J. G. Snijders. J. Chem. Phys. 101, 9783 (1994). https://doi.org/10.1063/1.467943.Search in Google Scholar
[57] G. Frenking, F. M. Bickelhaupt. The Chemical Bond 1. Fundamental Aspects of Chemical Bonding, chap. The EDA Perspective of Chemical Bonding, Wiley-VCH, Weinheim, Vol. 121 (2014).10.1002/9783527664696Search in Google Scholar
[58] L. M. Zhao, von Hopffgarten, D. M. Andrada, G. Frenking. WIREs Comput. Mol. Sci. 8, 1345 (2018). https://doi.org/10.1002/wcms.1345.Search in Google Scholar
[59] L. Zhao, M. Hermann, W. H. E. Schwarz, G. Frenking. Nat. Rev. Chem. 3, 48 (2019). https://doi.org/10.1038/s41570-018-0060-4.Search in Google Scholar
[60] L. Zhao, S. Pan, N. Holzmann, P. Schwerdtfeger, G. Frenking. Chem. Rev. 119, 8781 (2019). https://doi.org/10.1021/acs.chemrev.8b00722.Search in Google Scholar PubMed
[61] P. Politzer, J. S. Murray, T. Clark. J. Mol. Model. 21, 52 (2015). https://doi.org/10.1007/s00894-015-2585-5.Search in Google Scholar PubMed
[62] W. Yang, K. E. Krantz, L. A. Freeman, D. Dickie, A. Molino, G. Frenking, S. Pan, D. J. D. Wilson, R. J. GilliardJr. Angew. Chem. Int. Ed. 59, 3850 (2020). https://doi.org/10.1002/anie.201909627.Search in Google Scholar PubMed PubMed Central
[63] G. Deng, S. Pan, G. Wang, L. Zhao, M. Zhou, G. Frenking. Angew. Chem. Int. Ed. 59, 10603 (2020). https://doi.org/10.1002/anie.202002621.Search in Google Scholar PubMed PubMed Central
[64] S. Pan, G. Frenking. Angew. Chem. Int. Ed. 59, 8756 (2020). https://doi.org/10.1002/anie.202000229.Search in Google Scholar PubMed
[65] L. Zhao, S. Pan, M. Zhou, G. Frenking. Science 365, eaay5021 (2019). https://doi.org/10.1126/science.aay5021.Search in Google Scholar PubMed
[66] R. Saha, S. Pan, P. K. Chattaraj, G. Merino. Dalton Trans. 49, 1056 (2020). https://doi.org/10.1039/c9dt04213j.Search in Google Scholar PubMed
[67] J. Andrés, P. W. Ayers, R. A. Boto, R. Carbó-Dorca, H. Chermette, J. Cioslowski, J. Contreras-García, D. L. Cooper, G. Frenking, C. Gatti, F. Heidar-Zadeh, L. Joubert, Á. Martín. Pendás, E. Matito, I. Mayer, A. J. Misquitta, Y. Mo, J. Pilmé, P. L. A. Popelier, M. Rahm, E. Ramos-Cordoba, P. Salvador, W. H. E. Schwarz, S. Shahbazian, B. Silvi, M. Solà, K. Szalewicz, V. Tognetti, F. Weinhold, É. L. Zins. J. Comput. Chem. 40, 2248 (2019).10.1002/jcc.26003Search in Google Scholar PubMed
[68] K. C. Mondal, H. W. Roesky, B. Dittrich, N. Holzmann, M. Hermann, G. Frenking, A. Meents. J. Am. Chem. Soc. 135, 15990 (2013). https://doi.org/10.1021/ja4072139.Search in Google Scholar PubMed
[69] J. Z. Xiong, D. Jiang, C. E. Dixon, K. M. Baines, T. K. Sham. Can. J. Chem. 74, 2229 (1996). https://doi.org/10.1139/v96-251.Search in Google Scholar
[70] R. H. Walker, K. A. Miller, S. L. Scott, Z. T. Cygan, J. M. Bartolin, J. W. Kampf, M. M. B. Holl. Organometallics 28, 2744 (2009). https://doi.org/10.1021/om900182z.Search in Google Scholar
[71] H. Zhang, P. H. Toy. Adv. Synth. Catal. 363, 215 (2021). https://doi.org/10.1002/adsc.202001019.Search in Google Scholar
[72] G. Frenking, M. Hermann, D. M. Andrada, N. Holzmann. Chem. Soc. Rev. 44, 1129 (2015).10.1039/C5CS00815HSearch in Google Scholar
[73] Y. Xiong, S. Yao, S. Inoue, J. D. Epping, M. Driess. Angew. Chem. Int. Ed. 52, 7147 (2013), Angew. Chem. 125, 7287 (2013). https://doi.org/10.1002/anie.201302537.Search in Google Scholar PubMed
[74] G. Frenking, R. Tonner, S. Klein, N. Takagi, T. Shimizu, A. Krapp, K. K. Pandey, P. Parameswaran. Chem. Soc. Rev. 43, 5106 (2014). https://doi.org/10.1039/c4cs00073k.Search in Google Scholar PubMed
[75] B. Niepçtter, R. Herbst-Irmer, D. Kratzert, P. P. Samuel, K. C. Mondal, H. W. Roesky, P. Jerabek, G. Frenking, D. Stalke. Angew. Chem. Int. Ed. 53, 2766 (2014), Angew. Chem. 126, 2806 (2014).10.1002/anie.201308609Search in Google Scholar PubMed
[76] Y. Xiong, S. Yao, G. Tan, S. Inoue, M. Driess. J. Am. Chem. Soc. 135, 5004 (2013). https://doi.org/10.1021/ja402477w.Search in Google Scholar PubMed
[77] H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas. Science 336, 1420 (2012). https://doi.org/10.1126/science.1221138.Search in Google Scholar PubMed
[78] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. SchaeferIII, P. v. R. Schleyer, G. H. Robinson. Science 321, 1069 (2008). https://doi.org/10.1126/science.1160768.Search in Google Scholar PubMed
[79] A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking. Angew. Chem. Int. Ed. 48, 9701 (2009), Angew. Chem. 121, 9881 (2009). https://doi.org/10.1002/anie.200905495.Search in Google Scholar PubMed
[80] C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch. Chem. Commun. 48, 9955 (2012). https://doi.org/10.1039/c2cc35228a.Search in Google Scholar PubMed
[81] R. Appel, R. Schçllhorn. Angew. Chem. Int. Ed. Engl. 3, 805 (1964), Angew. Chem. 76, 991 (1964). https://doi.org/10.1002/anie.196408051.Search in Google Scholar
[82] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. SchaeferIII, P. v. R. Schleyer, G. H. Robinson. J. Am. Chem. Soc. 130, 14970 (2008). https://doi.org/10.1021/ja807828t.Search in Google Scholar PubMed
[83] M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. SchaeferIII, P. v. R. Schleyer, G. H. Robinson. Chem. Eur. J. 16, 432 (2010). https://doi.org/10.1002/chem.200902840.Search in Google Scholar PubMed
[84] R. Kinjo, B. Donnadieu, G. Bertrand. Angew. Chem. Int. Ed. 49, 5930 (2010), Angew. Chem. 122, 6066 (2010).10.1002/anie.201002889Search in Google Scholar PubMed
[85] M. Hermann, G. Frenking. Chem. Eur. J. 23, 3347 (2017). https://doi.org/10.1002/chem.201604801.Search in Google Scholar PubMed
[86] D. C. Georgiou, L. Zhao, D. J. D. Wilson, G. Frenking, J. L. Dutton. Chem. Eur. J. 23, 2926 (2017). https://doi.org/10.1002/chem.201605495.Search in Google Scholar PubMed
[87] Z. Wu, J. Xu, L. Sokolenko, Y. L. Yagupolskii, R. Feng, Q. Liu, Y. Lu, L. Zhao, I. Fernández, G. Frenking, T. Trabelsi, J. S. Francisco, X. Zeng. Chem. Eur. J. 23, 16566 (2017). https://doi.org/10.1002/chem.201703161.Search in Google Scholar PubMed
[88] D. M. Andrada, J. L. Casalz-Sainz, A. M. Pendás, G. Frenking. Chem. Eur. J. 24, 9083 (2018). https://doi.org/10.1002/chem.201800680.Search in Google Scholar PubMed
[89] R. Saha, S. Pan, G. Merino, P. K. Chattaraj. Angew. Chem. Int. Ed. 58, 8372 (2019). https://doi.org/10.1002/anie.201900992.Search in Google Scholar PubMed
[90] Q. Wang, S. Pan, Y. Wu, G. Deng, G. Wang, L. Zhao, M. Zhou, G. Frenking. Angew. Chem. Int. Ed. 58, 17365 (2019). https://doi.org/10.1002/anie.201908572.Search in Google Scholar PubMed PubMed Central
[91] K. Dyduch, M. P. Mitoraj, A. Michalak. J. Mol. Model. 19, 2747 (2013). https://doi.org/10.1007/s00894-012-1591-0.Search in Google Scholar PubMed PubMed Central
[92] F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie. J. Am. Chem. Soc. 83, 3539 (1961). https://doi.org/10.1021/ja01477a052.Search in Google Scholar
[93] R. Tonner, G. Frenking. Angew. Chem. Int. Ed. 46, 8695 (2007). https://doi.org/10.1002/anie.200701632.Search in Google Scholar PubMed
[94] C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand. Angew. Chem. Int. Ed. 47, 3206 (2008). https://doi.org/10.1002/anie.200705620.Search in Google Scholar PubMed
[95] A. Fürstner, M. Alcarazo, R. Goddard, C. W. Lehmann. Angew. Chem. Int. Ed. 47, 3210 (2008).10.1002/anie.200705798Search in Google Scholar PubMed
[96] R. Tonner, F. Öxler, B. Neumüller, W. Petz, G. Frenking. Angew. Chem. Int. Ed. 45, 8038 (2006), Angew. Chem. 118, 8206 (2006).10.1002/anie.200602552Search in Google Scholar PubMed
[97] N. V. Sidgwick. The Electronic Theory of Valency, Clarendon, Oxford (1927).Search in Google Scholar
[98] D. Himmel, I. Krossing, A. Schnepf. Angew. Chem., Int. Ed. 53, 370 (2014). https://doi.org/10.1002/anie.201300461.Search in Google Scholar PubMed
[99] G. Frenking. Angew. Chem. Int. Ed. 53, 6040 (2014). https://doi.org/10.1002/anie.201311022.Search in Google Scholar PubMed
[100] D. Himmel, I. Krossing, A. Schnepf. Angew. Chem. Int. Ed. 53, 6047 (2014). https://doi.org/10.1002/anie.201403078.Search in Google Scholar PubMed
[101] S. Yu. Varshavskii. Russ. J. Gen. Chem. 50, 406 (1980).Search in Google Scholar
[102] S. Yu. Varshavskii. Zh. Obshch. Khim. 50, 514 (1980).Search in Google Scholar
[103] B. A. Laws, S. T Gibson, B. R Lewis, R. W. Field. Nat. Commun. 10, 5199 (2019). https://doi.org/10.1038/s41467-019-13039-y.Search in Google Scholar PubMed PubMed Central
[104] T.-F. Leung, D. Jiang, M.-C. Wu, D. Xiao, W.-M. Ching, G. P. A. Yap, T. Yang, L. Zhao, T.-G. Ong, G. Frenking. Nat. Chem. 13, 89 (2021). https://doi.org/10.1038/s41557-020-00579-w.Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-1102).
© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode