Abstract
The important and perspective molecular building blocks composed of hexaphenylbenzenes (HPBs) or their oxidized derivatives, hexa-peri-hexabenzocoronenes (HBCs), and metalloporphyrins have recently received significant attention of the researchers. In this study, motivated by recent findings, we have addressed the modifications of structures and properties of HBC-porphyrin compounds by using instead of aromatic porphyrins antiaromatic 20π isophlorin derivatives of thiophene or selenophene. We have reported the first comparative computational investigation of the following systems: (i) HBC with one non-metallated aromatic porphyrin, P(N4H2), unit, HBC-P(N4H2), (ii) HBC with one S-core-modified antiaromatic porphyrin (S-isophlorin), PS4, unit, HBC-PS4, and (iii) HBC with one Se-core-modified antiaromatic porphyrin (Se-isophlorin), PSe4, unit, HBC-PSe4. The study has been done employing the B3LYP/6-31G* approach (in the gas phase and in the implicit solvents, benzene and dichloromethane), and comparison with the B3LYP/6-31G** and B3LYP/6-311G* approaches was performed, where relevant. The effects of the core-modified antiaromatic isophlorins on the structures, electronic, and other properties, potentially including reactivity, of the whole building block HBC-isophlorin have been shown to be quite pronounced and to be noticeably stronger than the effects of the original aromatic non-metallated porphyrin. Thus, we have demonstrated theoretically that the complete porphyrin core-modification with other elements, this time with S and Se leading to the formation of the antiaromatic isophlorins, should be considered as a promising way for modifying and tuning structures, electronic properties and reactivity of the hexabenzocoronene-porphyrin(s) building blocks.
Article note:
A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2021) held on-line, 9–13 August 2021.
Acknowledgments
The computational resources of the supercomputer facilities at Instituto Tecnologica de Aeronautica (ITA) are highly appreciated. Also, this research was supported by the high-performance computing system of PIDi-UTEM (SCC-PIDi-UTEM FONDEQUIP-EQM180180).
-
Research funding: The author deeply acknowledges the financial support of the Universidad Tecnica Federica Santa Maria (USM), Santiago, Chile
References
[1] J. Wu, W. Pisula, K. Müllen. Chem. Rev. 107, 718 (2007), https://doi.org/10.1021/cr068010r.Search in Google Scholar PubMed
[2] A. Narita, X. Y. Wang, X. Feng, K. Müllen. Chem. Soc. Rev. 44, 6616 (2015), https://doi.org/10.1039/c5cs00183h.Search in Google Scholar PubMed
[3] V. Vij, V. Bhalla, M. Kumar. Chem. Rev. 116, 9565 (2016), https://doi.org/10.1021/acs.chemrev.6b00144.Search in Google Scholar PubMed
[4] A. Miyasaka, T. Amaya, T. Hirao. Chem. Eur. J. 20, 1615 (2014), https://doi.org/10.1002/chem.201303946.Search in Google Scholar PubMed
[5] S. Pramanik, V. Bhalla, M. Kumar. Chem. Commun. 50, 13533 (2014), https://doi.org/10.1039/c4cc05460a.Search in Google Scholar PubMed
[6] G. Singh, M. Kumar, V. Bhalla. Green Chem. 20, 5346 (2018), https://doi.org/10.1039/c8gc02527d.Search in Google Scholar
[7] S. Pramanik, V. Bhalla, M. Kumar. ACS Appl. Mater. Interfaces 7, 22786 (2015), https://doi.org/10.1021/acsami.5b04377.Search in Google Scholar PubMed
[8] Y.-Y. Zhan, N. Tanaka, Y. Ozawa, T. Kojima, T. Mashiko, U. Nagashima, M. Tachikawa, S. Hiraoka. J. Org. Chem. 83, 5132 (2018), https://doi.org/10.1021/acs.joc.8b00495.Search in Google Scholar PubMed
[9] K. Kondo, J. K. Klosterman, M. Yoshizawa. Chem. Eur. J. 23, 16710 (2017), https://doi.org/10.1002/chem.201702519.Search in Google Scholar PubMed
[10] T. Mashiko, S. Hiraoka, U. Nagashima, M. Tachikawa. Phys. Chem. Chem. Phys. 19, 1627 (2017), https://doi.org/10.1039/c6cp07754d.Search in Google Scholar PubMed
[11] P. S. Bols, H. L. Anderson. Acc. Chem. Res. 51, 2083 (2018), https://doi.org/10.1021/acs.accounts.8b00313.Search in Google Scholar PubMed
[12] R. Haver, L. Tejerina, H.-W. Jiang, M. Rickhaus, M. Jirasek, I. Grübner, H. J. Eggimann, L. M. Herz, H. L. Anderson. J. Am. Chem. Soc. 141, 7965 (2019), https://doi.org/10.1021/jacs.9b02965.Search in Google Scholar PubMed PubMed Central
[13] J. Cremers, R. Haver, M. Rickhaus, J. Q. Gong, L. Favereau, M. D. Peeks, T. D. W. Claridge, L. M. Herz, H. L. Anderson. J. Am. Chem. Soc. 140, 5352 (2018), https://doi.org/10.1021/jacs.8b02552.Search in Google Scholar PubMed
[14] K. M. Kadish, K. M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, Academic Press, San Diego, CA, Vol. 1–6, (2000).Search in Google Scholar
[15] K. M. Kadish, K. M. Smith, R. Guilard (Eds.), Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, World Scientific, Singapore, Vol. III, (2010).10.1142/7752-vol6Search in Google Scholar
[16] C. C. Leznoff, A. B. P. Lever (Eds.), Phthalocyanines: Properties and Applications, VCH Publishers, New York, Vol. 1–4, (1989, 1993, 1996).Search in Google Scholar
[17] M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, E. M. N. Mhuircheartaigh. Adv. Mater. 19, 2737 (2007), https://doi.org/10.1002/adma.200601850.Search in Google Scholar
[18] Z. Zhoua, Z. Shen. J. Mater. Chem. C 3, 3239 (2015), https://doi.org/10.1039/c5tc00115c.Search in Google Scholar
[19] H. Imahori, T. Umeyama, S. Ito. Acc. Chem. Res. 42, 1809 (2009), https://doi.org/10.1021/ar900034t.Search in Google Scholar PubMed
[20] W. J. Youngblood, S.-H. Anna Lee, K. Maeda, T. E. Mallouk. Acc. Chem. Res. 42, 1966 (2009), https://doi.org/10.1021/ar9002398, and references therein.Search in Google Scholar PubMed
[21] T. Higashinoa, H. Imahori. Dalton Trans. 44, 448 (2015), https://doi.org/10.1039/c4dt02756f.Search in Google Scholar PubMed
[22] M. R. Wasielewski. Acc. Chem. Res. 42, 1910 (2009), https://doi.org/10.1021/ar9001735.Search in Google Scholar PubMed
[23] N. Aratani, D. Kim, A. Osuka. Acc. Chem. Res. 42, 1922 (2009), https://doi.org/10.1021/ar9001697.Search in Google Scholar
[24] Y. Ding, W.-H. Zhu, Y. Xie. Chem. Rev. 117, 2203 (2017), https://doi.org/10.1021/acs.chemrev.6b00021.Search in Google Scholar
[25] M. Takase, R. Ismael, R. Murakami, M. Ikeda, D. Kim, H. Shinmori, H. Furuta, A. Osuka. Tetrahedron Lett. 43, 5157 (2002), https://doi.org/10.1016/s0040-4039(02)00970-x.Search in Google Scholar
[26] H. S. Cho, H. Rhee, J. K. Song, C.-K. Min, M. Takase, N. Aratani, S. Cho, A. Osuka, T. Joo, D. Kim. J. Am. Chem. Soc. 125, 5849 (2003), https://doi.org/10.1021/ja021476g.Search in Google Scholar PubMed
[27] P. A. Liddell, G. Kodis, L. de la Garza, A. L. Moore, T. A. Moore, D. Gust. J. Phys. Chem. B 108, 10256 (2004), https://doi.org/10.1021/jp040053t.Search in Google Scholar
[28] W.-S. Li, D.-L. Jiang, Y. Suna, T. Aida. J. Am. Chem. Soc. 127, 7700 (2005), https://doi.org/10.1021/ja0513335.Search in Google Scholar PubMed
[29] S. Cho, W.-S. Li, M.-C. Yoon, T. K. Ahn, D.-L. Jiang, J. Kim, T. Aida, D. Kim. Chem. Eur J. 12, 7576 (2006), https://doi.org/10.1002/chem.200600213.Search in Google Scholar PubMed
[30] G. Kodis, Y. Terazono, P. A. Liddell, J. Andréasson, V. Garg, M. Hambourger, T. A. Moore, A. L. Moore, D. Gust. J. Am. Chem. Soc. 128, 1818 (2006), https://doi.org/10.1021/ja055903c.Search in Google Scholar PubMed
[31] A. Trabolsi, M. Urbani, J. L. Delgado, F. Ajamaa, M. Elhabiri, N. Solladie, J.-F. Nierengarten, A.-M. Albrecht-Gary. New J. Chem. 32, 159 (2008), https://doi.org/10.1039/b712081h.Search in Google Scholar
[32] Y. Terazono, G. Kodis, K. Bhushan, J. Zaks, C. Madden, A. L. Moore, T. A. Moore, G. R. Fleming, D. Gust. J. Am. Chem. Soc. 133, 2916 (2011), https://doi.org/10.1021/ja107753f.Search in Google Scholar PubMed
[33] V. Garg, G. Kodis, P. A. Liddell, Y. Terazono, T. A. Moore, A. L. Moore, D. Gust. J. Phys. Chem. B 117, 11299 (2013), https://doi.org/10.1021/jp402265e.Search in Google Scholar PubMed
[34] M. M. Martin, M. Dill, J. Langer, N. Jux. J. Org. Chem. 84, 1489 (2019), https://doi.org/10.1021/acs.joc.8b02907.Search in Google Scholar PubMed
[35] W. W. H. Wong, T. Khoury, D. Vak, C. Yan, D. J. Jones, M. J. Crossley, A. B. Holmes. J. Mater. Chem. 20, 7005 (2010), https://doi.org/10.1039/c0jm00311e.Search in Google Scholar
[36] J. M. Englert, J. Malig, V. A. Zamolo, A. Hirsch, N. Jux. Chem. Commun. 49, 4827 (2013), https://doi.org/10.1039/c3cc41740a.Search in Google Scholar PubMed
[37] D. Lungerich, J. F. Hitzenberger, M. Marcia, F. Hampel, T. Drewello, N. Jux. Angew. Chem. Int. Ed. 53, 12231 (2014), https://doi.org/10.1002/anie.201407053; Angew. Chem. 126, 12427 (2014).Search in Google Scholar PubMed
[38] D. Lungerich, J. F. Hitzenberger, W. Donaubauer, T. Drewello, N. Jux. Chem. Eur. J. 22, 16755 (2016), https://doi.org/10.1002/chem.201603789.Search in Google Scholar PubMed
[39] W. Perkins, F. R. Fischer. Chem. Eur. J. 23, 17687 (2017), https://doi.org/10.1002/chem.201705252.Search in Google Scholar PubMed
[40] M. M. Martin, N. Jux. J. Porphyr. Phthalocyanines 22, 454 (2018), https://doi.org/10.1142/s1088424618500451.Search in Google Scholar
[41] D. Lungerich, J. F. Hitzenberger, F. Hampel, T. Drewello, N. Jux. Chem. Eur. J. 24, 15818 (2018), https://doi.org/10.1002/chem.201803684.Search in Google Scholar PubMed
[42] Q. Chen, L. Brambilla, L. Daukiya, K. S. Mali, S. De Feyter, M. Tommasini, K. Müllen, A. Narita. Angew. Chem. Int. Ed. 57, 11233 (2018), https://doi.org/10.1002/anie.201805063; Angew. Chem. 130, 11403 (2018).Search in Google Scholar PubMed
[43] M. M. Martin, P. Haines, F. Hampel, N. Jux, D. Lungerich. Angew. Chem. Int. Ed. 58, 8932 (2019), https://doi.org/10.1002/anie.201903654.Search in Google Scholar PubMed
[44] T. Umeyama, T. Hanaoka, H. Yamada, Y. Namura, S. Mizuno, T. Ohara, J. Baek, J. Park, Y. Takano, K. Stranius, N. V. Tkachenko, H. Imahori. Chem. Sci. 10, 6642 (2019), https://doi.org/10.1039/c9sc01538h.Search in Google Scholar PubMed PubMed Central
[45] D. Reger, P. Haines, F. W. Heinemann, D. M. Guldi, N. Jux. Angew. Chem. Int. Ed. 57, 5938 (2018), https://doi.org/10.1002/anie.201800585; Angew. Chem. 130, 6044 (2018).Search in Google Scholar PubMed
[46] M. M. Martin, D. Lungerich, F. Hampel, J. Langer, T. K. Ronson, N. Jux. Chem. Eur J. 25, 15083 (2019), https://doi.org/10.1002/chem.201903113.Search in Google Scholar PubMed PubMed Central
[47] M. M. Martin, C. Dusold, A. Hirsch, N. Jux. J. Porphyr. Phthalocyanines 24, 268 (2020), https://doi.org/10.1142/s1088424619500810.Search in Google Scholar
[48] A. E. Kuznetsov. in Descriptive Inorganic Chemistry Researches of Metal Compounds, T. Akitsu (Ed.), pp. 135–152, InTechOpen, London, UK (2017).Search in Google Scholar
[49] A. E. Kuznetsov. Adv. Chem. Res. 57, 1 (2019), https://doi.org/10.1134/s0010952519010064.Search in Google Scholar
[50] A. E. Kuznetsov. Phys. Sci. Rev. (2021), https://doi.org/10.1515/psr-2021-0079.Search in Google Scholar
[51] P. J. Chmielewski, L. Latos-Grazyński. Coord. Chem. Rev. 249, 2510 (2005), https://doi.org/10.1016/j.ccr.2005.05.015.Search in Google Scholar
[52] I. Gupta, M. Ravikanth. Coord. Chem. Rev. 250, 468 (2006), https://doi.org/10.1016/j.ccr.2005.10.010.Search in Google Scholar
[53] A. E. Kuznetsov. Comp. Theor. Chem. 1188, 112973 (2020), https://doi.org/10.1016/j.comptc.2020.112973.Search in Google Scholar
[54] J. Barbee, A. E. Kuznetsov. Comp. Theor. Chem. 981, 73 (2012), https://doi.org/10.1016/j.comptc.2011.11.049.Search in Google Scholar PubMed PubMed Central
[55] A. E. Kuznetsov. De Gruyter. Phys. Sci. Rev. 4, 20190001 (2019).Search in Google Scholar
[56] A. E. Kuznetsov. Chem. Phys. 447, 36 (2015), https://doi.org/10.1016/j.chemphys.2014.11.018.Search in Google Scholar
[57] A. E. Kuznetsov. Chem. Phys. 469–470, 38 (2016), https://doi.org/10.1016/j.chemphys.2016.02.010.Search in Google Scholar
[58] A. E. Kuznetsov. J. Theor. Comput. Chem. 15, 1650043 (2016), https://doi.org/10.1142/s0219633616500437.Search in Google Scholar
[59] A. E. Kuznetsov. J. Appl. Solut. Chem. Model. 6, 91 (2017), https://doi.org/10.6000/1929-5030.2017.06.03.1.Search in Google Scholar
[60] A. E. Kuznetsov. in Density Functional Theory, P. Ramasami (Ed.), pp. 135–146.Search in Google Scholar
[61] A. E. Kuznetsov. Phys. Sci. Rev. 4, 20190001 (2019).Search in Google Scholar
[62] A. E. Kuznetsov. Pure Appl. Chem. 93, 561 (2021), doi:https://doi.org/10.1515/pac-2020-1105.Search in Google Scholar
[63] B. K. Reddy, A. Basavarajappa, M. D. Ambhore, V. G. Anand. Chem. Rev. 117, 3420 (2017), https://doi.org/10.1021/acs.chemrev.6b00544.Search in Google Scholar PubMed
[64] S. P. Panchal, B. K. Reddy, V. G. Anand, Synth. Redox Chem. Synlett. 29, 2362 (2018).10.1055/s-0037-1609907Search in Google Scholar
[65] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Sonnenberg, J. L. Zheng, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. MontgomeryJr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, J. Normand, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. in Gaussian, Inc., Wallingford CT, 2009. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2010).Search in Google Scholar
[66] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. MontgomeryJr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox. Gaussian 16, Revision B.01, Wallingford CT, Gaussian, Inc (2016).Search in Google Scholar
[67] P. M. Kozlowski, J. R. Bingham, A. A. Jarzecki. J. Phys. Chem. A 112, 12781 (2008), https://doi.org/10.1021/jp801696c.Search in Google Scholar PubMed
[68] S. Myradalyyev, T. Limpanuparb, X. Wang, H. Hirao. Polyhedron 52, 96 (2013), https://doi.org/10.1016/j.poly.2012.11.018.Search in Google Scholar
[69] A. D. Becke. J. Chem. Phys. 98, 5648 (1993), https://doi.org/10.1063/1.464913.Search in Google Scholar
[70] R. G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).Search in Google Scholar
[71] R. Ditchfield, W. J. Hehre, J. A. Pople. J. Chem. Phys. 54, 724 (1971), https://doi.org/10.1063/1.1674902.Search in Google Scholar
[72] W. J. Hehre, R. Ditchfield, J. A. Pople. J. Chem. Phys. 56, 2257 (1972), https://doi.org/10.1063/1.1677527.Search in Google Scholar
[73] A. D. McLean, G. S. Chandler. J. Chem. Phys. 72, 5639 (1980), https://doi.org/10.1063/1.438980.Search in Google Scholar
[74] K. Raghavachari, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys. 72, 650 (1980).10.1063/1.438955Search in Google Scholar
[75] J. Tomasi, B. Mennucci, R. Cammi. Chem. Rev. 105, 2999 (2005), https://doi.org/10.1021/cr9904009.Search in Google Scholar PubMed
[76] A. E. Reed, L. A. Curtiss, F. Weinhold. Chem. Rev. 88, 899 (1988), https://doi.org/10.1021/cr00088a005.Search in Google Scholar
[77] A. E. Reed, R. B. Weinstock, F. Weinhold. J. Chem. Phys. 83, 735 (1985), https://doi.org/10.1063/1.449486.Search in Google Scholar
[78] G. Schaftenaar, J. H. Noordik. J. Comput.-Aided Mol. Design 14, 123 (2000), https://doi.org/10.1023/a:1008193805436.10.1023/A:1008193805436Search in Google Scholar
[79] Avogadro. An Open-Source Molecular Builder and Visualization Tool, Version 1.1.1, http://avogadro.cc/.Search in Google Scholar
[80] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison. J. Chem. 4, 17 (2012), https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-1105).
© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode