Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
-
Sutopo Hadi
, Tati Suhartati
Abstract
Disinfecting activity test of four diphenyltin(IV) benzoate derivative compounds has been carried out. The four compounds investigated were diphenyltin (IV) di 4 aminobenzoate (DPDA) (2), diphenyltin (IV) di 4 chlorobenzoate (DPDC) (3), diphenyltin(IV) di-4-hydroxybenzoate (DPDH) (4), and diphenyltin(IV) di-4-nitrobenzoate (DPDN) (5), and they were prepared by reacting diphenyltin(IV) oxide (DPO) (1) with benzoic acid derivatives of 4-aminobenzoic acid (4-HABz), 4-chlorobenzoic acid (4-HCBz), 4-hydroxybenzoic acid (4-HHBz) and 4-nitrobenzoic acid (4-HNBz), respectively. The compounds were well characterized by 1H, 13C NMR, IR, UV spectroscopies, and their pieces were defined using microanalytical data. The disinfectant test was carried out on two bacteria, Gram-negative Salmonella sp., and Gram-positive Staphylococus aureus. The result showed that all of the compounds were active as a disinfectant (disinfecting agent) with a minimum inhibitory concentration of 5 × 10−4 M. Compound 5 was found to be most active compared to others which exhibited the ability to reduce the concentration of the S. aureus bacteria within 5 min.
Article note:
A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2021) held on-line, 9–13 August 2021.
Acknowledgments
We would like to thank some people who have to help us in the experimental part, including our students Anggit A. Putri, Dini Aulia, Ahmad Farisi, Olivia Margareta, and also Liza Aprilia and Tri Kiswantari for their help and for allowing us to use some spaces in the laboratory.
-
Research funding: The authors’ gratitude to the Institute of Research and Community Services, Universitas Lampung as well as Directorate of Research and Community Services, The Ministry of Education, Cultural. Research and Technology, Indonesia that gave access to funding the assignment carried out through Penelitian Dasar (Basic Research Grant Scheme) 2021 with Agreement Numbers of 120/E4.1/AK.04.PT/2021 and 3972/UN26.21/PN/2021.
References
[1] M. Tariq, S. Ali, N. Muhammad, N. A. Shah, M. Sirajuddin, M. N. Thahir, N. Khalid, M. R. Khan. J. Coord. Chem. 67, 323 (2014).10.1080/00958972.2014.884217Suche in Google Scholar
[2] M. Sirajuddin, S. Ali, V. McKee, M. Sohail, H. Pasha. Eur. J. Med. Chem. 84, 343 (2014).10.1016/j.ejmech.2014.07.028Suche in Google Scholar PubMed
[3] M. Sirajuddin, S. Ali, M. N. Thahir. Inorg. Chim. Acta. 439, 145 (2016).10.1016/j.ica.2015.10.017Suche in Google Scholar
[4] M. Tariq, N. Muhammad, M. Sirajuddin, S. Ali, N. A. Shah, N. Khalid, M. N. Thahir, M. R. Khan. J. Organomet. Chem. 723, 79 (2013).10.1016/j.jorganchem.2012.09.011Suche in Google Scholar
[5] M. Sirajuddin, S. Ali, V. McKee, S. Zaib, J. Iqbal. RSC Adv. 4, 57505 (2014).10.1039/C4RA10487KSuche in Google Scholar
[6] M. Sirajuddin, V. McKee, M. Tariq, S. Ali. Eur. J. Med. Chem. 143, 1903 (2018).10.1016/j.ejmech.2017.11.001Suche in Google Scholar PubMed
[7] A. C. T. Kuate, M. M. Naseer, M. Lutter, K. Jurckschat. Chem. Commun. 54, 739 (2018).10.1039/C7CC09263FSuche in Google Scholar
[8] V. Arens, M. M. Naseer, M. Lutter, L. Iovkova-Berends, K. Jurckschat. Eur. J. Inorg. Chem. 13, 1540 (2017).10.1002/ejic.201800054Suche in Google Scholar
[9] A. Szorcsik, L. Nagy, K. Gadja-Schrantz, L. Pellerito, E. Nagy, E. T. Edelmann. J. Radioanal. Nucl. Chem. 252, 523 (2002).10.1023/A:1015802820423Suche in Google Scholar
[10] S. Hadi, M. Rilyanti. Orient. J. Chem. 26, 775 (2010).10.1002/ejoc.201090009Suche in Google Scholar
[11] S. Hadi, M. Rilyanti, Suharso. Indo. J. Chem. 12, 172 (2012).10.22146/ijc.21359Suche in Google Scholar
[12] C. E. CarraherJr., M. R. Roner. J. Organomet. Chem. 751, 67 (2014).10.1016/j.jorganchem.2013.05.033Suche in Google Scholar
[13] S. Hadi, E. Hermawati, Noviany, T. Suhartati, Yandri. Asian J. Microbiol. Biotech. Environ. Sci. 20, 113 (2018).Suche in Google Scholar
[14] S. Samsuar, W. Simanjuntak, H. I. Qudus, Y. Yandri, H. Herasari, S. Hadi. J. Adv. Pharm. Edu. Res. 11(2), 17 (2021).10.51847/kaijZKAFCOSuche in Google Scholar
[15] S. Hadi, S. Samsuar, W. Simanjuntak, H. I. Qudus. ARPN J. Eng. Appl. Sci. 15, 1623 (2021).Suche in Google Scholar
[16] S. Hadi, S. Lestari, T. Suhartati, H. I. Qudus, M. Rilyanti, D. Herasari, Y. Yandri. Pure Appl. Chem. 93(5), 623 (2021).10.1515/pac-2020-1103Suche in Google Scholar
[17] C. Hansch, R. P. Verma. Eur. J. Med. Chem. 44, 260 (2009).10.1016/j.ejmech.2008.02.040Suche in Google Scholar PubMed
[18] S. Hadi, Noviany, M. Rilyanti, Macedon. J. Chem. Chem. Eng. 37, 185 (2018).10.20450/mjcce.2018.1414Suche in Google Scholar
[19] S. Hadi, M. D. Fenska, N. Noviany, H. Satria, W. Simanjuntak, M. M. Naseer. Main Group Met. Chem. 44, 256 (2021).10.1515/mgmc-2021-0028Suche in Google Scholar
[20] R. Singh, P. Chaudary, N. K. Khausik. Rev. Inorg. Chem. 30, 275 (2010).10.1515/REVIC.2010.30.4.275Suche in Google Scholar
[21] S. Hadi, H. Afriyani, W. D. Anggraini, H. I. Qudus, T. Suhartati. Asian J. Chem. 27, 1509 (2015).10.14233/ajchem.2015.18590Suche in Google Scholar
[22] H. Kurniasih, M. Nurissalam, B. Iswantoro, H. Afriyani, H. I. Qudus, S. Hadi. Orient. J. Chem. 31, 2377 (2015).10.13005/ojc/310467Suche in Google Scholar
[23] N. N. Hazani, Y. Mohd, S. A. I. S. M. Ghazali, Y. Farina, N. N. Dzulkifli. J. Electrochem. Sci. Technol. 10, 29 (2019).Suche in Google Scholar
[24] P. Potter, A. G. Perry. Nursing Fundamental Textbook: Concepts, Processes and Practices, EGC, Jakarta, 4th ed. (2005) (in Indonesian).Suche in Google Scholar
[25] C. Broker. Nursing Encyclopedia, EGC, Jakarta (2009) (in Indonesian).Suche in Google Scholar
[26] V. D. Rosenthal, H. M. Al-Abdely, A. A. Elkholy, S. A. S. AlKhawaja, H. Leblebicioglu, Y. Mehta, V. Rai, N. V. Hung, S. S. Kanj, M. F. Salama, E. Salgado-Yepez, N. Elahi, R. M. Otero, A. Apisarnthanarak, B. M. De Carvalho, B. E. Ider, D. Fisher, M. C. S. G. Buenaflor, M. M. Petrov, A. M. Quesada-Mora, F. Zand, V. Gurskis, T. Anguseva, A. Ikram, D. A. de Moros, W. Duszynska, N. Mejia, F. G. Horhat, V. Belskiy, V. Mioljevic, G. Di Silvestre, K. Furova, G. Y. Ramos-Ortiz, M. O. G. Elanbya, H. I. Satari, U. Gupta, T. Dendane, L. Raka, H. Guanche-Garcell, B. Hu, D. Padgett, K. Jayatilleke, N. B. Jaballah, E. Apostolopoulou, W. E. P. Leon, A. Sepulveda-Chavez, H. M. Telechea, A. Trotte, C. Alvarez-Moreno, L. Kushner-Davalos. Am. J. Infect. Control 144, 1495 (2016).10.1016/j.ajic.2016.08.007Suche in Google Scholar PubMed
[27] K. Plata, E. R. Adriana, G. Wegrzyn. Acta. Biochim. Pol. 56, 597 (2009).10.18388/abp.2009_2491Suche in Google Scholar
[28] M. J. Pelczar, E. C. S. Chan. in Element of Microbiology, p. 698, Mc Graw Hill Book Company, Auckland (1981).Suche in Google Scholar
[29] V. Lorian. Antibiotics in Laboratory Medical. Wiliam and Wilkins Co., Baltimore, London, pp. 1–22, 170–178, 511–512 (1980).Suche in Google Scholar
[30] D. Amsterdam. in Antibiotics in Laboratory Medicine, p. 807, LWW Publisher, Philadelphia, 6th ed. (2014).Suche in Google Scholar
© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode