Abstract
The use of dielectric relaxation spectroscopy (DRS) for studying electrolyte solutions is reviewed, focussing on the authors’ investigations over the last three decades. It is shown that this often-overlooked technique provides powerful insights into the nature of ion-ion and ion-solvent interactions. DRS is revealed to be particularly useful for detection of weak ion association and, due to its unique ability to detect solvent-separated species, the quantitation of ion pairing. It is demonstrated that DRS correctly determines chemical speciation for ion-paired systems where major spectroscopic techniques (NMR, Raman, UV-vis) fail. DRS also provides important insights into ion solvation. In aqueous solutions, it has been used to build up a coherent set of ‘effective’ hydration numbers for ions based on the dynamics of proximate water molecules, and has a unique ability to detect ‘slow’ water resulting from hydrophilic and hydrophobic hydration of solutes. DRS has been especially useful for characterising the behaviour of ionic liquids (ILs), e.g. showing they possess rather low dielectric constants and, surprisingly, contain no significant concentrations of ion pairs. Neat ILs and their mixtures with molecular solvents are shown by ultra-broadband DRS to exhibit extremely complicated behaviour especially at frequencies in the THz region.
Article note
A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.
Acknowledgements
The work described in this plenary presentation would not have been possible without the tireless efforts and passion of Post-Doctoral Fellow, Simon Schrödle, and Ph.D. students at Murdoch and Regensburg Universities (in alphabetical order): Chandrika Akilan, Ting Chen, Johannes Hunger, Hafiz Rahman, Thomas Sonnleitner, Alexander Stoppa, Andrew Tromans and Wolfgang Wachter. Funding in Australia was from the Australian Research Council and the Australian alumina industries (via the Australian Mineral Industries Research Association), and in Germany from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Studienstiftung des Deutschen Volkes.
References
[1] E. H. Grant, R. J. Sheppard, G. P. South. Dielectric Behaviour of Biological Molecules in Solution, Ch. 3, Oxford University Press, Oxford (1978).Suche in Google Scholar
[2] C. P. Smyth. Dielectric Behaviour and Structure, McGraw-Hill, New York (1955).Suche in Google Scholar
[3] R. Buchner, G. T. Hefter. Phys. Chem. Chem. Phys. 11, 8984 (2009).10.1039/b906555pSuche in Google Scholar PubMed
[4] F. Kremer, A. Schönhals. Broadband Dielectric Spectroscopy, Springer, Berlin (2003).10.1007/978-3-642-56120-7Suche in Google Scholar
[5] D. Q. M. Craig (Ed.). Dielectric Analysis of Pharmaceutical Systems, Taylor and Francis, London (1995).10.3109/9780203302576Suche in Google Scholar
[6] Y. Marcus, G. T. Hefter. Chem. Rev. 106, 4585 (2006).10.1021/cr040087xSuche in Google Scholar PubMed
[7] Y. Marcus. Ions in Solution and their Solvation, Wiley, Hoboken, USA (2015).10.1002/9781118892336Suche in Google Scholar
[8] V. Gutmann. The Donor-Acceptor Approach to Molecular Interactions, Plenum, New York (1978).10.1007/978-1-4615-8825-2Suche in Google Scholar
[9] W. Wachter, W. Kunz, R. Buchner, G. T. Hefter. J. Phys. Chem. A 109, 8675 (2005).10.1021/jp053299mSuche in Google Scholar PubMed
[10] T. Yamaguchi, T. Matsuoka, S. Koda. J. Chem. Phys. 130, 094506 (2009).10.1063/1.3085717Suche in Google Scholar PubMed
[11] M. Eigen, K. Tamm. Z. Elektrochem. 66, 93 (1962).10.2307/310737Suche in Google Scholar
[12] M. Eigen, K. Tamm. Z. Elektrochem. 66, 107 (1962).10.1002/bbpc.19620660205Suche in Google Scholar
[13] R. A. Robinson, R. H. Stokes. Electrolyte Solutions, 2nd ed., Butterworths, London (1970).Suche in Google Scholar
[14] J. Barthel, H. Krienke, W. Kunz. Physical Chemistry of Electrolyte Solutions, Springer, New York (1998).Suche in Google Scholar
[15] K. S. Pitzer (Ed.). Activity Coefficients in Electrolyte Solutions, 2nd ed., CRC Press, Boca Raton, USA (1991).Suche in Google Scholar
[16] R. Buchner, T. Chen, G. T. Hefter. J. Phys. Chem. B 108, 2365 (2004).10.1021/jp034870pSuche in Google Scholar
[17] W. W. Rudolph, G. Irmer, G. T. Hefter. Phys. Chem. Chem. Phys. 5, 5253 (2003).10.1039/b308951gSuche in Google Scholar
[18] M. T. Beck, I. Nagypal. Chemistry of Complex Equilibria, Ellis Horwood, Chichester, UK (1990).Suche in Google Scholar
[19] G. T. Hefter. Pure Appl. Chem. 78, 1571 (2006).10.1351/pac200678081571Suche in Google Scholar
[20] W. W. Rudolph, R. Mason. J. Solution Chem. 30, 527 (2001).10.1023/A:1010334818580Suche in Google Scholar
[21] S. Schrödle, W. W. Rudolph, G. T. Hefter, R. Buchner. Geochim. Cosmochim. Acta 71, 5287 (2007).10.1016/j.gca.2007.08.026Suche in Google Scholar
[22] S. Schrödle, W. Wachter, R. Buchner, G. T. Hefter. Inorg. Chem. 47, 8619 (2008).10.1021/ic702396rSuche in Google Scholar
[23] R. Buchner, J. Barthel. J. Molec. Liq. 63, 55 (1995).10.1016/0167-7322(95)92021-3Suche in Google Scholar
[24] N. Moreno, E. F. Vargas, R. Buchner. J. Phys. Chem. B 123, 1840 (2019).10.1021/acs.jpcb.8b11900Suche in Google Scholar
[25] R. Buchner, F. Samani, P. M. May, P. Sturm, G. T. Hefter. ChemPhysChem. 4, 373 (2003).10.1002/cphc.200390064Suche in Google Scholar
[26] H. Ohtaki, T. Radnai. Chem. Rev. 93, 1157 (1993).10.1021/cr00019a014Suche in Google Scholar
[27] T. Hajari, P. Ganguly, N. F. A. van der Vegt. J. Chem. Theory Comput. 8, 3804 (2012).10.1021/ct300074dSuche in Google Scholar
[28] J. Zhou, X. Lu, Y. Wang, J. Shi. Fluid Phase Equilibria 194–197, 257 (2002).10.1016/S0378-3812(01)00694-XSuche in Google Scholar
[29] W. Wachter, R. Buchner, G. T. Hefter. J. Phys. Chem. B 110, 5147 (2006).10.1021/jp057189rSuche in Google Scholar PubMed
[30] H. M. A. Rahman, G. T. Hefter, R. Buchner. J. Phys. Chem. B 116, 314 (2012).10.1021/jp207504dSuche in Google Scholar PubMed
[31] H. M. A. Rahman, G. T. Hefter, R. Buchner. J. Phys. Chem. B 117, 2142 (2013).10.1021/jp310029cSuche in Google Scholar PubMed
[32] N. V. Plechkova, R. D. Rogers, K. R. Seddon (Eds.). Ionic Liquids: From Knowledge to Application, ACS Symposium Series, Vol. 1030, American Chemical Society, Washington, DC (2009).10.1021/bk-2009-1030Suche in Google Scholar
[33] S. Schrödle, G. Annat, D. R. MacFarlane, M. Forsyth, R. Buchner, G. T. Hefter. J. Chem. Soc. Chem. Commun. 1748 (2006).10.1039/B602209JSuche in Google Scholar
[34] J. Hunger, A. Stoppa, S. Schrödle, G. T. Hefter, R. Buchner. ChemPhysChem. 10, 723 (2009).10.1002/cphc.200800483Suche in Google Scholar PubMed
[35] G. Senanayake, G. T. Hefter. Monatsh. Chem. 134, 669 (2003).10.1007/s00706-002-0578-4Suche in Google Scholar
[36] J. Dupont. J. Brazil. Chem. Soc. 15, 341 (2004).10.1590/S0103-50532004000300002Suche in Google Scholar
[37] A. Stoppa, J. Hunger, R. Buchner, G. T. Hefter, A. Thoman, H. Helm. J. Phys. Chem. B 112, 4854 (2008).10.1021/jp800852zSuche in Google Scholar PubMed
[38] J. Hunger, A. Stoppa, R. Buchner, G. T. Hefter. J. Phys. Chem. B 112, 12913 (2008).10.1021/jp8045627Suche in Google Scholar PubMed
[39] G. T. Hefter. Pure Appl. Chem. 77, 605 (2005).10.1351/pac200577030605Suche in Google Scholar
[40] K. Fumino, A. Wulf, R. Ludwig. Angew. Chem., Int. Ed. 48, 5184 (2009).10.1002/anie.200806224Suche in Google Scholar
[41] K. Fumino, E. Reichert, K. Wittier, R. Hempelmann, R. Ludwig. Angew. Chem. Int. Ed. 51, 6236 (2012).10.1002/anie.201200508Suche in Google Scholar PubMed
[42] T. Sonnleitner, D. A. Turton, G. T. Hefter, A. Ortner, S. Waselikowski, M. Walther, K. Wynne, R. Buchner. J. Phys. Chem. B 119, 8826 (2015).10.1021/jp502935tSuche in Google Scholar PubMed
©2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids