Home Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
Article
Licensed
Unlicensed Requires Authentication

Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions

  • Glenn Hefter EMAIL logo and Richard Buchner
Published/Copyright: January 13, 2020

Abstract

The use of dielectric relaxation spectroscopy (DRS) for studying electrolyte solutions is reviewed, focussing on the authors’ investigations over the last three decades. It is shown that this often-overlooked technique provides powerful insights into the nature of ion-ion and ion-solvent interactions. DRS is revealed to be particularly useful for detection of weak ion association and, due to its unique ability to detect solvent-separated species, the quantitation of ion pairing. It is demonstrated that DRS correctly determines chemical speciation for ion-paired systems where major spectroscopic techniques (NMR, Raman, UV-vis) fail. DRS also provides important insights into ion solvation. In aqueous solutions, it has been used to build up a coherent set of ‘effective’ hydration numbers for ions based on the dynamics of proximate water molecules, and has a unique ability to detect ‘slow’ water resulting from hydrophilic and hydrophobic hydration of solutes. DRS has been especially useful for characterising the behaviour of ionic liquids (ILs), e.g. showing they possess rather low dielectric constants and, surprisingly, contain no significant concentrations of ion pairs. Neat ILs and their mixtures with molecular solvents are shown by ultra-broadband DRS to exhibit extremely complicated behaviour especially at frequencies in the THz region.


Article note

A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.


Acknowledgements

The work described in this plenary presentation would not have been possible without the tireless efforts and passion of Post-Doctoral Fellow, Simon Schrödle, and Ph.D. students at Murdoch and Regensburg Universities (in alphabetical order): Chandrika Akilan, Ting Chen, Johannes Hunger, Hafiz Rahman, Thomas Sonnleitner, Alexander Stoppa, Andrew Tromans and Wolfgang Wachter. Funding in Australia was from the Australian Research Council and the Australian alumina industries (via the Australian Mineral Industries Research Association), and in Germany from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Studienstiftung des Deutschen Volkes.

References

[1] E. H. Grant, R. J. Sheppard, G. P. South. Dielectric Behaviour of Biological Molecules in Solution, Ch. 3, Oxford University Press, Oxford (1978).Search in Google Scholar

[2] C. P. Smyth. Dielectric Behaviour and Structure, McGraw-Hill, New York (1955).Search in Google Scholar

[3] R. Buchner, G. T. Hefter. Phys. Chem. Chem. Phys. 11, 8984 (2009).10.1039/b906555pSearch in Google Scholar PubMed

[4] F. Kremer, A. Schönhals. Broadband Dielectric Spectroscopy, Springer, Berlin (2003).10.1007/978-3-642-56120-7Search in Google Scholar

[5] D. Q. M. Craig (Ed.). Dielectric Analysis of Pharmaceutical Systems, Taylor and Francis, London (1995).10.3109/9780203302576Search in Google Scholar

[6] Y. Marcus, G. T. Hefter. Chem. Rev. 106, 4585 (2006).10.1021/cr040087xSearch in Google Scholar PubMed

[7] Y. Marcus. Ions in Solution and their Solvation, Wiley, Hoboken, USA (2015).10.1002/9781118892336Search in Google Scholar

[8] V. Gutmann. The Donor-Acceptor Approach to Molecular Interactions, Plenum, New York (1978).10.1007/978-1-4615-8825-2Search in Google Scholar

[9] W. Wachter, W. Kunz, R. Buchner, G. T. Hefter. J. Phys. Chem. A 109, 8675 (2005).10.1021/jp053299mSearch in Google Scholar PubMed

[10] T. Yamaguchi, T. Matsuoka, S. Koda. J. Chem. Phys. 130, 094506 (2009).10.1063/1.3085717Search in Google Scholar PubMed

[11] M. Eigen, K. Tamm. Z. Elektrochem. 66, 93 (1962).10.2307/310737Search in Google Scholar

[12] M. Eigen, K. Tamm. Z. Elektrochem. 66, 107 (1962).10.1002/bbpc.19620660205Search in Google Scholar

[13] R. A. Robinson, R. H. Stokes. Electrolyte Solutions, 2nd ed., Butterworths, London (1970).Search in Google Scholar

[14] J. Barthel, H. Krienke, W. Kunz. Physical Chemistry of Electrolyte Solutions, Springer, New York (1998).Search in Google Scholar

[15] K. S. Pitzer (Ed.). Activity Coefficients in Electrolyte Solutions, 2nd ed., CRC Press, Boca Raton, USA (1991).Search in Google Scholar

[16] R. Buchner, T. Chen, G. T. Hefter. J. Phys. Chem. B 108, 2365 (2004).10.1021/jp034870pSearch in Google Scholar

[17] W. W. Rudolph, G. Irmer, G. T. Hefter. Phys. Chem. Chem. Phys. 5, 5253 (2003).10.1039/b308951gSearch in Google Scholar

[18] M. T. Beck, I. Nagypal. Chemistry of Complex Equilibria, Ellis Horwood, Chichester, UK (1990).Search in Google Scholar

[19] G. T. Hefter. Pure Appl. Chem. 78, 1571 (2006).10.1351/pac200678081571Search in Google Scholar

[20] W. W. Rudolph, R. Mason. J. Solution Chem. 30, 527 (2001).10.1023/A:1010334818580Search in Google Scholar

[21] S. Schrödle, W. W. Rudolph, G. T. Hefter, R. Buchner. Geochim. Cosmochim. Acta 71, 5287 (2007).10.1016/j.gca.2007.08.026Search in Google Scholar

[22] S. Schrödle, W. Wachter, R. Buchner, G. T. Hefter. Inorg. Chem. 47, 8619 (2008).10.1021/ic702396rSearch in Google Scholar

[23] R. Buchner, J. Barthel. J. Molec. Liq. 63, 55 (1995).10.1016/0167-7322(95)92021-3Search in Google Scholar

[24] N. Moreno, E. F. Vargas, R. Buchner. J. Phys. Chem. B 123, 1840 (2019).10.1021/acs.jpcb.8b11900Search in Google Scholar

[25] R. Buchner, F. Samani, P. M. May, P. Sturm, G. T. Hefter. ChemPhysChem. 4, 373 (2003).10.1002/cphc.200390064Search in Google Scholar

[26] H. Ohtaki, T. Radnai. Chem. Rev. 93, 1157 (1993).10.1021/cr00019a014Search in Google Scholar

[27] T. Hajari, P. Ganguly, N. F. A. van der Vegt. J. Chem. Theory Comput. 8, 3804 (2012).10.1021/ct300074dSearch in Google Scholar

[28] J. Zhou, X. Lu, Y. Wang, J. Shi. Fluid Phase Equilibria 194–197, 257 (2002).10.1016/S0378-3812(01)00694-XSearch in Google Scholar

[29] W. Wachter, R. Buchner, G. T. Hefter. J. Phys. Chem. B 110, 5147 (2006).10.1021/jp057189rSearch in Google Scholar PubMed

[30] H. M. A. Rahman, G. T. Hefter, R. Buchner. J. Phys. Chem. B 116, 314 (2012).10.1021/jp207504dSearch in Google Scholar PubMed

[31] H. M. A. Rahman, G. T. Hefter, R. Buchner. J. Phys. Chem. B 117, 2142 (2013).10.1021/jp310029cSearch in Google Scholar PubMed

[32] N. V. Plechkova, R. D. Rogers, K. R. Seddon (Eds.). Ionic Liquids: From Knowledge to Application, ACS Symposium Series, Vol. 1030, American Chemical Society, Washington, DC (2009).10.1021/bk-2009-1030Search in Google Scholar

[33] S. Schrödle, G. Annat, D. R. MacFarlane, M. Forsyth, R. Buchner, G. T. Hefter. J. Chem. Soc. Chem. Commun. 1748 (2006).10.1039/B602209JSearch in Google Scholar

[34] J. Hunger, A. Stoppa, S. Schrödle, G. T. Hefter, R. Buchner. ChemPhysChem. 10, 723 (2009).10.1002/cphc.200800483Search in Google Scholar PubMed

[35] G. Senanayake, G. T. Hefter. Monatsh. Chem. 134, 669 (2003).10.1007/s00706-002-0578-4Search in Google Scholar

[36] J. Dupont. J. Brazil. Chem. Soc. 15, 341 (2004).10.1590/S0103-50532004000300002Search in Google Scholar

[37] A. Stoppa, J. Hunger, R. Buchner, G. T. Hefter, A. Thoman, H. Helm. J. Phys. Chem. B 112, 4854 (2008).10.1021/jp800852zSearch in Google Scholar PubMed

[38] J. Hunger, A. Stoppa, R. Buchner, G. T. Hefter. J. Phys. Chem. B 112, 12913 (2008).10.1021/jp8045627Search in Google Scholar PubMed

[39] G. T. Hefter. Pure Appl. Chem. 77, 605 (2005).10.1351/pac200577030605Search in Google Scholar

[40] K. Fumino, A. Wulf, R. Ludwig. Angew. Chem., Int. Ed. 48, 5184 (2009).10.1002/anie.200806224Search in Google Scholar

[41] K. Fumino, E. Reichert, K. Wittier, R. Hempelmann, R. Ludwig. Angew. Chem. Int. Ed. 51, 6236 (2012).10.1002/anie.201200508Search in Google Scholar PubMed

[42] T. Sonnleitner, D. A. Turton, G. T. Hefter, A. Ortner, S. Waselikowski, M. Walther, K. Wynne, R. Buchner. J. Phys. Chem. B 119, 8826 (2015).10.1021/jp502935tSearch in Google Scholar PubMed

Published Online: 2020-01-13
Published in Print: 2020-10-25

©2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
  5. Conference papers
  6. Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
  7. Solution chemistry in the surface region of aqueous solutions
  8. Water confined in solutions of biological relevance
  9. Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
  10. Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
  11. Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
  12. Excess spectroscopy and its applications in the study of solution chemistry
  13. Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
  14. Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
  15. Interactions between adsorbents and adsorbates in aqueous solutions
  16. Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
  17. Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
  18. Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
  19. Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
  20. The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
  21. Separation of phenols from oils using deep eutectic solvents and ionic liquids
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2019-1011/html
Scroll to top button