Startseite Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study

  • Wanjing Cui , Hongfang Hou , Jiaojiao Chen , Yafei Guo , Lingzong Meng und Tianlong Deng ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. Januar 2020

Abstract

Densities of the sodium arsenate aqueous solution with the molality varied from (0.04165 to 0.37306) mol · kg−1 were determined experimentally at temperature intervals of 5 K from 283.15 K to 363.15 K and ambient pressure using a precise Anton Paar Digital vibrating-tube densimeter. The apparent molar volumes (V ϕ ), thermal expansion coefficient (α) and partial molar volume ( V ¯ B ) were obtained based on the results of density measurement. The 3D diagram of apparent molar volume against temperature and molality as well as the diagram of thermal expansion coefficient and partial molar volume against molality were plotted, respectively. On the basis of the Pitzer ion-interaction equation of apparent molar volume model, the Pitzer single-salt parameters ( ( β M,X ( 0 ) v , β M,X ( 1 ) v , β M,X ( 2 ) v  and  C M,X v , M X = N a 3 A s O 4 ) and their temperature-dependent correlation F(i, p, T) = a 1 + a 2ln(T/298.15) + a 3(T – 298.15) + a 4/(620 – T) + a 5/(T – 227) (where T is temperature in Kelvin, a i is the correlation coefficient) for Na3AsO4 were obtained on account of the least-squares method. Predictive apparent molar volumes agree well with the experimental values, and those results indicate that the single-salt parameters and their relational coefficients of temperature-dependence for Na3AsO4 obtained are reliable.


Article note

A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.


Acknowledgements

Financial supports from National Natural Science Foundation of China (Funder Id: 21773170 and U1607123), the Key Projects of Natural Science Foundation of Tianjin (18JCZDJC10040) and the Yangtze Scholars and Innovative Research Team in Chinese University (IRT_17R81) are acknowledged.

References

[1] M. Vahter, G. Concha. Basic Clin. Pharmacol. 89, 1 (2010).Suche in Google Scholar

[2] V. Foà, A. Colombi, M. Maroni, M. Buratti, G. Calzaferri. Sci. Total Environ. 34, 241 (1984).10.1016/0048-9697(84)90066-4Suche in Google Scholar

[3] P. L. Smedley, D. G. Kinniburgh. Appl. Geochem. 17, 517 (2002).10.1016/S0883-2927(02)00018-5Suche in Google Scholar

[4] J. H. Huang, F. Scherr, E. Matzner. Water Air Soil Poll. 182, 31 (2007).10.1007/s11270-006-9318-4Suche in Google Scholar

[5] C. K. Jain, I. Ali. Water Res. 34, 4304 (2000).10.1016/S0043-1354(00)00182-2Suche in Google Scholar

[6] N. Najib, C. Christodoulatos. J. Hazard. Mater. 367, 256 (2019).10.1016/j.jhazmat.2018.12.067Suche in Google Scholar PubMed

[7] P. Coursol, A. D. Pelton, P. Chartrand, M. Zamalloa. Can. Metall. Quart. 44, 547 (2005).10.1179/cmq.2005.44.4.547Suche in Google Scholar

[8] L. Marini, M. Accornero. Environ. Geol. 52, 1343 (2006).10.1007/s00254-006-0578-5Suche in Google Scholar

[9] E. Perfetti, G. S. Pokrovski, K. Ballerat–Busserolles, V. Majer, F. Gibert. Geochim. Cosmochim. Ac. 72, 713 (2008).10.1016/j.gca.2007.11.017Suche in Google Scholar

[10] J. M. Speight. Lange’s Handbook of Chemistry, pp. 1–1815, McGraw-Hill, New York (2005).Suche in Google Scholar

[11] W. G. Xu, Y. Qin, F. Gao, J. G. Liu, C. W. Yan, J. Z. Yang. Ind. Eng. Chem. Res. 53, 7217 (2014).10.1021/ie402040hSuche in Google Scholar

[12] K. Zhao, L. Li, J. Li, Y. Gou, Y. Liu, T. Deng. J. Solution Chem. 47, 827 (2018).10.1007/s10953-018-0761-9Suche in Google Scholar

[13] K. Zhao, L. Li, Y. Gou, L. Meng, M. Li, J. Duo, T. Deng. J. Chem. Eng. Data. 64, 944 (2019).10.1021/acs.jced.8b00814Suche in Google Scholar

[14] B. S. Krumgalz, R. Pogorelsky, Y. A. Iosilevskii, A. Weiser, K. S. Pitzer. J. Solution Chem. 23, 849 (1994).10.1007/BF00972750Suche in Google Scholar

[15] B. S. Krumgalz, R. Pogorelsky, K. S. Pitzer. J. Phys. Chem. Ref. Data. 25, 663 (1996).10.1063/1.555981Suche in Google Scholar

[16] D. P. Fernandez, A. R. H. Goodwin, E. W. Lemmon, J. M. H. LeveltSengers, R. C. Williams. J. Phys. Chem. Ref. Data. 26, 1125 (1997).10.1063/1.555997Suche in Google Scholar

Published Online: 2020-01-13
Published in Print: 2020-10-25

©2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
  5. Conference papers
  6. Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
  7. Solution chemistry in the surface region of aqueous solutions
  8. Water confined in solutions of biological relevance
  9. Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
  10. Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
  11. Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
  12. Excess spectroscopy and its applications in the study of solution chemistry
  13. Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
  14. Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
  15. Interactions between adsorbents and adsorbates in aqueous solutions
  16. Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
  17. Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
  18. Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
  19. Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
  20. The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
  21. Separation of phenols from oils using deep eutectic solvents and ionic liquids
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2019-1102/html
Button zum nach oben scrollen