Abstract
It has been recognised that ionic liquids (ILs) with long alkyl-chains have a segregated structure due to the inhomogeneous distribution of polar parts and non-polar parts. This inhomogeneity of ILs brings about unique solvation phenomena of solute molecules dissolved in ILs. We have investigated various solvation-state selective phenomena by using laser spectroscopic techniques such as solvation state selective vibrational spectroscopy, translational and rotational dynamics of small molecules in ILs, and solvation state selective fundamental chemical reactions. In this paper, we have reviewed an intramolecular electron transfer (ET) reaction in the Marcus inverted region of N,N-dimethyl-p-nitroaniline and an intramolecular proton transfer (IPT) reaction in 4′-N,N-diethylamino-3-hydroxyflavone as examples of chemical reactions affected by unique solvation in ILs.
Article note
A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.
Acknowledgement
The author is very grateful to the co-workers of the original papers. Our works presented here are mainly supported by Grants-in-Aid for Scientific Research from JSPS (Grant Nos. 16350010, 17073012, 23350006, and 17KT0012, Funder Id: http://dx.doi.org/10.13039/501100001691) and partially supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities 2015–2019 (S1511025, Funder Id: http://dx.doi.org/10.13039/501100001700).
References
[1] A. Triolo, O. Russina, H. J. Bleif, E. Di Cola. J. Phys. Chem. B 111, 4641 (2007).10.1021/jp067705tSuche in Google Scholar PubMed
[2] A. Triolo, O. Russina, B. Fazio, G. B. Appetecchi, M. Carewska, S. Passerini. J. Phys. Chem. 130, 164521 (2009).10.1063/1.3119977Suche in Google Scholar PubMed
[3] O. Yamamuro, T. Yamada, M. Kofu, M. Nakakoshi, M. Nagao. J. Chem. Phys. 135, 054508 (2011).10.1063/1.3622598Suche in Google Scholar PubMed
[4] M. Kofu, M. Nagao, T. Ueki, Y. Kitazawa, Y. Nakamura, S. Sawamura, M. Watanabe, O. Yamamuro. J. Phys. Chem. B 117, 2773 (2013).10.1021/jp312608rSuche in Google Scholar PubMed
[5] M. G. Del Pópolo, G. A. Voth. J. Phys. Chem. B 108, 1744 (2004).10.1021/jp0364699Suche in Google Scholar
[6] J. N. Canongia Lopes, A. A. Padua. J. Phys. Chem. B 110, 3330 (2006).10.1021/jp056006ySuche in Google Scholar PubMed
[7] S. M. Urahata, M. C. C. Ribeiro. J. Phys. Chem. Lett. 1, 5 (2010).10.1021/jz100411wSuche in Google Scholar
[8] K. Shimizu, C. E. S. Bernardes, J. N. Canongia Lopes. J. Phys. Chem. B 118, 567 (2013).10.1021/jp409987dSuche in Google Scholar PubMed
[9] K. Shimizu, C. E. Bernardes, J. N. Canongia Lopes. J. Phys. Chem. B 118, 567 (2014).10.1021/jp409987dSuche in Google Scholar
[10] H. V. Annapureddy, H. K. Kashyap, P. M. De Biase, C. J. Margulis. J. Phys. Chem. B 114, 16838 (2010).10.1021/jp108545zSuche in Google Scholar PubMed
[11] E. W. Castner, Jr., C. J. Margulis, M. Maroncelli, J. F. Wishart. Ann. Rev. Phys. Chem. 62, 85 (2011).10.1146/annurev-physchem-032210-103421Suche in Google Scholar PubMed
[12] P. K. Mandal, M. Sarkar, A. Samanta. J. Phys. Chem. A 108, 9048 (2004).10.1021/jp047250cSuche in Google Scholar
[13] H. Jin, X. Li, M. Maroncelli. J. Phys. Chem. B 111, 13473 (2007).10.1021/jp077226+Suche in Google Scholar PubMed
[14] A. J. McLean, M. J. Muldoon, C. M. Gordon, I. R. Dunkin. Chem. Commun. 17, 1880 (2002).10.1039/b202944hSuche in Google Scholar PubMed
[15] J. F. Wishart, P. Neta. J. Phys. Chem. B 107, 7261 (2003).10.1021/jp027792zSuche in Google Scholar
[16] A. Skrzypczak, P. Neta. J. Phys. Chem. A 107, 7800 (2003).10.1021/jp030416+Suche in Google Scholar
[17] R. C. Vieira, D. E. Falvey. J. Phys. Chem. B 111, 5023 (2007).10.1021/jp0630471Suche in Google Scholar PubMed
[18] J. V. Lockard, M. R. Wasielewski. J. Phys. Chem. B 111, 11638 (2007).10.1021/jp075567hSuche in Google Scholar PubMed
[19] Y. Nagasawa, T. Itoh, M. Yasuda, Y. Ishibashi, S. Ito, H. Miyasaka. J. Phys. Chem. B 112, 15758 (2008).10.1021/jp712142xSuche in Google Scholar PubMed
[20] Y. Nagasawa, A. Oishi, T. Itoh, M. Yasuda, M. Muramatsu, Y. Ishibashi, S. Ito, H. Miyasaka. J. Phys. Chem. C. 113, 11868 (2009).10.1021/jp9020454Suche in Google Scholar
[21] Y. Shim, H. J. Kim. J. Phys. Chem. B 113, 12964 (2009).10.1021/jp9065407Suche in Google Scholar PubMed
[22] N. Asami, T. Takaya, S. Yabumoto, S. Shigeto, H. O. Hamaguchi, K. Iwata. J. Phys. Chem. A 114, 6351 (2010).10.1021/jp912173hSuche in Google Scholar PubMed
[23] K. Santhosh, S. Banerjee, N. Rangaraj, A. Samanta. J. Phys. Chem. B 114, 1967 (2010).10.1021/jp910704ySuche in Google Scholar PubMed
[24] H. Wu, H. Wang, L. Xue, Y. Shi, X. Li. J. Phys. Chem. B 114, 14420 (2010).10.1021/jp101240aSuche in Google Scholar PubMed
[25] X. Li, M. Liang, A. Chakraborty, M. Kondo, M. Maroncelli. J. Phys. Chem. B 115, 6592 (2011).10.1021/jp200339eSuche in Google Scholar PubMed
[26] M. Liang, A. Kaintz, G. A. Baker, M. Maroncelli. J. Phys. Chem. B 116, 1370 (2011).10.1021/jp210892cSuche in Google Scholar PubMed
[27] M. Liang, A. Kaintz, G. A. Baker, M. Maroncelli. J. Phys. Chem. B 116, 1370 (2012).10.1021/jp210892cSuche in Google Scholar
[28] M. Koch, A. Rosspeintner, G. Angulo, E. Vauthey. J. Am. Chem. Soc. 134, 3729 (2012).10.1021/ja208265xSuche in Google Scholar PubMed
[29] A. Rosspeintner, M. Koch, G. Angulo, E. Vauthey. J. Am. Chem. Soc. 134, 11396 (2012).10.1021/ja3049095Suche in Google Scholar PubMed
[30] H. Y. Lee, J. B. Issa, S. S. Isied, E. W. Castner, Y. Pan, C. L. Hussey, K. S. Lee, J. F. Wishart. J. Phys. Chem. C 116, 5197 (2012).10.1021/jp208852rSuche in Google Scholar
[31] J. A. DeVine, M. Labib, M. E. Harries, R. A. M. Rached, J. Issa, J. F. Wishart, E. W. Castner. J. Phys. Chem. B 119, 11336 (2015).10.1021/acs.jpcb.5b03320Suche in Google Scholar PubMed
[32] Y. Nagasawa, H. Miyasaka. Phys. Chem. Chem. Phys. 16, 13008 (2014).10.1039/C3CP55465ASuche in Google Scholar
[33] S. Efrma, M. Bixon. Chem. Phys. Lett. 25, 4 (1974).10.1016/0009-2614(74)80325-8Suche in Google Scholar
[34] J. Ulstrup, J. Jortner. J. Chem. Phys. 63, 4358 (1975).10.1063/1.431152Suche in Google Scholar
[35] S. Efrima, M. Bixon. Chem. Phys. 13, 447 (1976).10.1016/0301-0104(76)87014-0Suche in Google Scholar
[36] J. Jortner, M. Bixon. J. Chem. Phys. 88, 167 (1988).10.1063/1.454632Suche in Google Scholar
[37] R. A. Marcus. J. Phys. Chem. 93, 3078 (1989).10.1021/j100345a040Suche in Google Scholar
[38] C. L. Thomsen, J. Thøgersen, S. R. Keiding. J. Phys. Chem. A 102, 1062 (1998).10.1021/jp972492gSuche in Google Scholar
[39] S. A. Kovalenko, R. Schanz, V. M. Farztdinov, H. Hennig, N. P. Ernsting. Chem. Phys. Lett. 323, 312 (2000).10.1016/S0009-2614(00)00432-2Suche in Google Scholar
[40] S. A. Kovalenko, R. Schanz, H. Hennig, N. P. Ernsting. J. Chem. Phys. 115, 3256 (2001).10.1063/1.1380696Suche in Google Scholar
[41] Q. An, P. Gilch. Chem. Phys. Lett. 363, 397 (2002).10.1016/S0009-2614(02)01182-XSuche in Google Scholar
[42] V. Kozich, W. Werncke, J. Dreyer, K. W. Brzezinka, M. Rini, A. Kummrow, T. Elsaesser. J. Chem. Phys. 117, 719 (2002).10.1063/1.1482698Suche in Google Scholar
[43] V. Kozich, W. Werncke, A. I. Vodchits, J. Dreyer. J. Chem. Phys. 118, 1808 (2003).10.1063/1.1530583Suche in Google Scholar
[44] T. Schrader, A. Sieg, F. Koller, W. Schreier, Q. An, W. Zinth, P. Gilch. Chem. Phys. Lett. 392, 358 (2004).10.1016/j.cplett.2004.05.090Suche in Google Scholar
[45] T. Gunaratne, J. R. Challa, M. C. Simpson. Chemphyschem 6, 1157 (2005).10.1002/cphc.200400288Suche in Google Scholar PubMed
[46] K. Osawa, M. Terazima, Y. Kimura. J. Phys. Chem. B 116, 11508 (2012).10.1021/jp305970rSuche in Google Scholar PubMed
[47] Y. Kimura, S. Ibaraki, R. Hirano, Y. Sugita, Y. Yasaka, M. Ueno. Phys. Chem. Chem. Phys. 19, 22161 (2017).10.1039/C7CP03610HSuche in Google Scholar
[48] Y. Kimura, T. Fukui, S. Okazoe, H. Miyabayashi, T. Endo. J. Mol. Liq. 289, 111128 (2019).10.1016/j.molliq.2019.111128Suche in Google Scholar
[49] E. G. McRA. J. Phys. Chem. 61, 11 (1956).Suche in Google Scholar
[50] C. Wakai, A. Oleinikova, M. Ott, H. Weingartner. J. Phys. Chem. B 109, 17028 (2005).10.1021/jp053946+Suche in Google Scholar PubMed
[51] H. Weingartner, P. Sasisanker, C. Daguenet, P. J. Dyson, I. Krossing, J. M. Slattery, T. Schubert. J. Phys. Chem. B 111, 4775 (2007).10.1021/jp0671188Suche in Google Scholar PubMed
[52] M. Mizoshiri, T. Nagao, Y. Mizoguchi, M. Yao. J. Phys. Chem. 132, 164510 (2010).10.1063/1.3419906Suche in Google Scholar PubMed
[53] P. Wassercheid, T. Welton. Ionic Liquids in Synthesis. Second, Completely Revised and Enlarged Edition ed. Wiley-VCH, Weinheim (2008).Suche in Google Scholar
[54] K. Nishikawa, Y. Ouchi, T. Ito, H. Ohno, M. Watanabe. Science of Ionic Liquid, first edition. Maruzen, Tokyo (2012).Suche in Google Scholar
[55] C. Poole. J. Chromatogr. A 1037, 49 (2004).10.1016/j.chroma.2003.10.127Suche in Google Scholar PubMed
[56] L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter, T. Welton. Phys. Chem. Chem. Phys. 5, 2790 (2003).10.1039/B303095DSuche in Google Scholar
[57] C. Reichardt. Green Chem. 7, 339 (2005).10.1039/b500106bSuche in Google Scholar
[58] S. N. V. K. Aki, J. F. Brennecke, A. Samanta. Chem. Commun. 5, 413 (2001).10.1039/b008039jSuche in Google Scholar
[59] M. A. Ab Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N. H. Hassan, J. P. Hallett, P. A. Hunt, H. Niedermeyer, J. M. Perez-Arlandis, M. Schrems, T. Welton, R. Wilding. Phys. Chem. Chem. Phys. 13, 16831 (2011).10.1039/c1cp21262aSuche in Google Scholar PubMed
[60] A. Kobayashi, K. Osawa, M. Terazima, Y. Kimura. Phys. Chem. Chem. Phys. 14, 13676 (2012).10.1039/c2cp41567dSuche in Google Scholar PubMed
[61] C. Reichardt. Solvents and Solvent Effects in Organic Chemistry. Third, Updated and Enlarged Edition ed. Wiley-VCH , Weinheim (2002).10.1002/3527601791Suche in Google Scholar
[62] Y. Kimura, T. Hamamoto, M. Terazima. J. Phys. Chem. A 111, 7081 (2007).10.1021/jp072020uSuche in Google Scholar PubMed
[63] H. Jin, G. A. Baker, S. Arzhantsev, J. Dong, M. Maroncelli. J. Phys. Chem. B 111, 7291 (2007).10.1021/jp070923hSuche in Google Scholar PubMed
[64] Z. Hu, C. J. Margulis. Proc Natl Acad Sci U S A. 103, 831 (2006).10.1073/pnas.0507364103Suche in Google Scholar PubMed PubMed Central
[65] Y. Kimura, K. Suda, M. Shibuya, Y. Yasaka, M. Ueno. Bull. Chem. Soc. Jpn. 88, 939 (2015).10.1246/bcsj.20150076Suche in Google Scholar
[66] T. Yamaguchi, Y. Kimura, N. Hirota. J. Chem. Phys. 107, 4436 (1997).10.1063/1.474785Suche in Google Scholar
[67] T. Yamaguchi, Y. Kimura, N. Hirota. J. Chem. Phys. 109, 9075 (1998).10.1063/1.477463Suche in Google Scholar
[68] T. Yamaguchi, Y. Kimura, N. Hirota. J. Chem. Phys. 109, 9084 (1998).10.1063/1.477464Suche in Google Scholar
[69] T. Fujisawa, M. Terazima, Y. Kimura. J. Phys. Chem. 124, 184503 (2006).10.1063/1.2194550Suche in Google Scholar PubMed
[70] M. Fukuda, M. Terazima, Y. Kimura. Chem. Phys. Lett. 463, 364 (2008).10.1016/j.cplett.2008.08.070Suche in Google Scholar
[71] Y. Kimura, M. Fukuda, K. Suda, M. Terazima. J. Phys. Chem. B 114, 11847 (2010).10.1021/jp105033qSuche in Google Scholar PubMed
[72] K. Suda, M. Terazima, Y. Kimura. Chem. Phys. Lett. 531, 70 (2012).10.1016/j.cplett.2012.02.004Suche in Google Scholar
[73] K. Suda, M. Terazima, Y. Kimura. Chem. Phys. Lett. 582, 169 (2013).10.1016/j.cplett.2013.07.051Suche in Google Scholar
[74] S. Hayaki, Y. Kimura, H. Sato. J. Phys. Chem. B 117, 6759 (2013).10.1021/jp311883fSuche in Google Scholar PubMed
[75] K. Suda, M. Terazima, Y. Kimura. Chem. Commun. 49, 3976 (2013).10.1039/c3cc40943kSuche in Google Scholar PubMed
[76] K. Suda, M. Terazima, H. Sato, Y. Kimura. J. Phys. Chem. B 117, 12567 (2013).10.1021/jp405537cSuche in Google Scholar
[77] G. A. Brucker, D. F. Kelley. J. Phys. Chem. 92, 3805 (1988).10.1021/j100324a025Suche in Google Scholar
[78] G. A. Brucker, D. F. Kelley, T. C. Swinney. J. Phys. Chem. 95, 3190 (1991).10.1021/j100161a043Suche in Google Scholar
[79] T. C. Swinney, D. F. Kelley. J. Phys. Chem. 95, 10369 (1991).10.1021/j100178a024Suche in Google Scholar
[80] P.-T. Chou, M. L. Martinez, J. H. Clements. Chem. Phys. Lett. 204, 395 (1993).10.1016/0009-2614(93)89175-HSuche in Google Scholar
[81] T. C. Swinney, D. F. Kelley. J. Chem. Phys. 99, 211 (1993).10.1063/1.465799Suche in Google Scholar
[82] S. M. Ormsona, R. G. Brown, F. Vollmer, W. Rettig. J. Photochem. Photobiol. A: Chem. 81, 65 (1994).10.1016/1010-6030(94)03778-7Suche in Google Scholar
[83] F. Parsapour, D. F. Kelley. J. Phys. Chem. 100, 211 (1996).10.1021/jp9520106Suche in Google Scholar
[84] Y. V. Kruchenok, N. A. Nemkovich, V. G. Pivovarenko, A. N. Rubinov. J. Appl. Spectrosc. 69, 9 (2002).10.1023/A:1019795031152Suche in Google Scholar
[85] A. S. Klymchenko, A. P. Demchenko. Phys. Chem. Chem. Phys. 5, 461 (2003).10.1039/b210352dSuche in Google Scholar
[86] S. Ameer-Beg, S. M. Ormson, X. Poteau, R. G. Brown, P. Foggi, L. Bussotti, F. V. R. Neuwahl. J. Phys. Chem. A 108, 6938 (2004).10.1021/jp048512dSuche in Google Scholar
[87] P.-T. Chou, C.-H. Huang, S.-C. Pu, Y.-M. Cheng, Y.-H. Liu, Y. Wang, C.-T. Chen. J. Phys. Chem. A 108, 6452 (2004).10.1021/jp0476390Suche in Google Scholar
[88] Y. M. Cheng, S. C. Pu, Y. C. Yu, P. T. Chou, C. H. Huang, C. T. Chen, T. H. Li, W. P. Hu. T. J. Phys. Chem. A 109, 11696 (2005).10.1021/jp052727lSuche in Google Scholar PubMed
[89] P. T. Chou, S. C. Pu, Y. M. Cheng, W. S. Yu, Y. C. Yu, F. T. Hung, W. P. Hu. J. Phys. Chem. A 109, 3777 (2005).10.1021/jp044205wSuche in Google Scholar PubMed
[90] A. Douhal, M. Sanz, L. Tormo, J. A. Organero. Chemphyschem 6, 419 (2005).10.1002/cphc.200400375Suche in Google Scholar PubMed
[91] M. Sanz, J. A. Organero, A. Douhal. Chem. Phys. 338, 135 (2007).10.1016/j.chemphys.2007.04.013Suche in Google Scholar
[92] V. I. Tomin, R. Jaworski. Opt. Spectrosc. 109, 279 (2010).10.1134/S0030400X10080217Suche in Google Scholar
[93] M. B. Shiflett, A. Yokozeki. Ind. Eng. Chem. Res. 44, 4453 (2005).10.1021/ie058003dSuche in Google Scholar
[94] D. Morgan, L. Ferguson, P. Scovazzo. Ind. Eng. Chem. Res. 44, 4815 (2005).10.1021/ie048825vSuche in Google Scholar
[95] D. Camper, C. Becker, C. Koval, R. Noble. Ind. Eng. Chem. Res. 45, 445 (2006).10.1021/ie0506668Suche in Google Scholar
[96] Y. Hou, R. E. Baltus. Ind. Eng. Chem. Res. 46, 8166 (2007).10.1021/ie070501uSuche in Google Scholar
[97] A. Kaintz, G. Baker, A. Benesi, M. Maroncelli. J. Phys. Chem. B 117, 11697 (2013).10.1021/jp405393dSuche in Google Scholar PubMed
[98] Y. Kimura, Y. Kida, Y. Matsushita, Y. Yasaka, M. Ueno, K. Takahashi. J. Phys. Chem. B 119, 8096 (2015).10.1021/acs.jpcb.5b02898Suche in Google Scholar PubMed
[99] Y. Yasaka, Y. Kimura. J. Phys. Chem. B 119, 15493 (2015).10.1021/acs.jpcb.5b09745Suche in Google Scholar PubMed
[100] J. C. Araque, S. K. Yadav, M. Shadeck, M. Maroncelli, C. J. Margulis. J. Phys. Chem. B 119, 7015 (2015).10.1021/acs.jpcb.5b01093Suche in Google Scholar PubMed
©2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids