Abstract
In-situ analytical methods are essential for the reliable observation of peptide reactions without perturbation of the system. In this work, a real-time in-situ NMR analysis was performed to gain insight into the initial stage of the aggregation of amyloid-beta (Aβ) 8–25 monomers, S8GY10EVHHQKLVFF20AEDVG25, in solution prior to the fibril formation. NMR chemical shift and intensity changes in combination with the CD spectra revealed no changes in Aβ secondary structure, but the presence of soluble, oligomeric intermediates followed by the appearance of insoluble and non-structured aggregates before β-fibril formation. Molecular views of intermediates and aggregation mechanisms were proposed in comparison with NMR spectral changes in wild-type Aβ 8–25 and its two mutants, A21G and E22G. The mutation of just one amino acid modified the aggregation properties of Aβ 8–25; it slowed or accelerated the fibril formation by controlling the progress of conversion from monomer to aggregate via a soluble, small oligomer.
Article note:
A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.
Funding source: Hyogo Science and Technology Association, Japan
Award Identifier / Grant number: 25073
Funding source: Japan Society for the Promotion of Science, Japan
Award Identifier / Grant number: 15K04501
Award Identifier / Grant number: 19K05394
Acknowledgments
The authors also thank Yui Uchihara, Tetsurou Nishida, and Kotoha Kose for sample preparation and data analyses of NMR and CD spectra.
-
Funding: This work was partly supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (15K04501, 19K05394) and by Hyogo Science and Technology Association (No. 25073).
References
[1] K. Wüthrich. NMR of Proteins and Nucleic Acids. Wiley, New York (1986).10.1051/epn/19861701011Suche in Google Scholar
[2] T. Sugiki, N. Kobayashi, T. Fujiwara. Comput. Struct. Biotech. J. 15, 328 and refs. cited therein (2017).10.1016/j.csbj.2017.04.001Suche in Google Scholar PubMed PubMed Central
[3] E. Okamura. Chem. Pharm. Bull. 67, 308 (2019).10.1248/cpb.c18-00946Suche in Google Scholar PubMed
[4] N. Nishida, Y. Ito, I. Shimada. Biochim. Biophys. Acta General Subjects 1864, 129364 (2020).10.1016/j.bbagen.2019.05.007Suche in Google Scholar PubMed
[5] K. Aki, E. Okamura. Sci. Rep. 6, 21594 (2016).10.1038/srep21594Suche in Google Scholar PubMed PubMed Central
[6] K. Aki, E. Okamura. J. Soln. Chem., in press.Suche in Google Scholar
[7] Y. Takechi-Haraya, K. Aki, Y. Tohyama, Y. Harano, T. Kawakami, H. Saito, E. Okamura. Pharmaceuticals 10, 42 (2017).10.3390/ph10020042Suche in Google Scholar PubMed PubMed Central
[8] R. E. Tanzi, L. Bertram. Cell 120, 545 (2005).10.1016/j.cell.2005.02.008Suche in Google Scholar PubMed
[9] B. A. Yankner, T. Lu. J. Biol. Chem. 284, 4755 (2009).10.1074/jbc.R800018200Suche in Google Scholar PubMed PubMed Central
[10] A. T. Petkova, Y. Ishii, J. J. Balbach, Q. N. Antzutkin, R. D. Leapman, F. Delaglio, R. Tycko. Proc. Natl. Acad. Sci. U.S.A. 99, 16742 (2002).10.1073/pnas.262663499Suche in Google Scholar PubMed PubMed Central
[11] A. T. Petkova, W.-M. Yau, R. Tycko. Biochemistry 45, 498 (2006).10.1021/bi051952qSuche in Google Scholar PubMed PubMed Central
[12] J.-X. Lu, W. Qiang, W.-M. Yau, C. D. Schwieters, S. C. Meredith, R. Tycko. Cell 154, 1257 (2013).10.1016/j.cell.2013.08.035Suche in Google Scholar PubMed PubMed Central
[13] Y. Xiao, B. Ma, D. McElheny, S. Parthasarathy, F. Long, M. Hoshi, R. Nussinov, Y. Ishii. Nat. Struct. Mol. Biol. 22, 499 (2015).10.1038/nsmb.2991Suche in Google Scholar PubMed PubMed Central
[14] M. T. Colvin, R. Silvers, Q. Z. Ni, T. V. Can, I. Sergeyev, M. Rosay, K. J. Donovan, B. Michael, J. Wall, S. Linse, R. G. Griffin. J. Am. Chem. Soc. 138, 9663 (2016).10.1021/jacs.6b05129Suche in Google Scholar PubMed PubMed Central
[15] Y. Suzuki, J. R. Brender, M. T. Scoper, J. Krishnamoorthy, Y. Zhou, B. T. Ruotolo, N. A. Kotov, A. Ramamoorthy, E. N. G. Marsh. Biochemistry 52, 1903 (2013).10.1021/bi400027ySuche in Google Scholar PubMed PubMed Central
[16] N. Yamamoto, S. Tsuhara, A. Tamura, E. Chatani. Sci. Rep. 8, 62 (2018).10.1038/s41598-017-18390-ySuche in Google Scholar PubMed PubMed Central
[17] Y. Suzuki, J. R. Brender, K. Hartman, A. Ramamoorthy, E. N. G. Marsh. Biochemistry 51, 8154 (2012).10.1021/bi3012548Suche in Google Scholar PubMed PubMed Central
[18] L. Breydo, V. N. Uversky. FEBS Lett. 589, 2640 (2015).10.1016/j.febslet.2015.07.013Suche in Google Scholar PubMed
[19] S. Linse. Pure Appl. Chem. 91, 211 (2019).10.1515/pac-2018-1017Suche in Google Scholar
[20] S. I. A. Cohen, S. Linse, L. M. Luheshi, E. Hellstrand, D. A. White, L. Rajah, D. E. Otzen, M. Vendruscolo, C. M. Dobson, T. P. J. Knowles. Proc. Natl. Acad. Sci. U.S.A. 110, 9758 (2013).10.1073/pnas.1218402110Suche in Google Scholar PubMed PubMed Central
[21] M. Törnquist, T. C. T. Michaels, K. Sanagavarapu, X. Yang, G. Meisl, S. I. A. Cohen, T. P. J. Knowles, S. Linse. Chem. Commun. 54, 8667 (2018).10.1039/C8CC02204FSuche in Google Scholar
[22] D. M. Walsh, D. M. Hartley, M. M. Condron, D. Selkoe, D. B. Teplow. Biochem. J. 355, 869 (2001).10.1042/bj3550869Suche in Google Scholar PubMed PubMed Central
[23] C. Nilsberth, A. Westlind-Danielsson, C. B. Eckman, M. M. Condron, K. Axelman, C. Forsell, C. Stenh, J. Luthman, D. B. Teplow, S. G. Younkin, J. Näslund, L. Lannfelt. Nat. Neurosci. 4, 887 (2001).10.1038/nn0901-887Suche in Google Scholar PubMed
[24] M. G. Zagorski, C. J. Barrow. Biochemistry 31, 5621 (1992).10.1021/bi00139a028Suche in Google Scholar PubMed
[25] U. R. K. Rao, C. Manohar, B. S. Valaulikar, R. M. Iyer. J. Phys. Chem. 91, 3286 (1987).10.1021/j100296a036Suche in Google Scholar
[26] B. K. Mishra, S. D. Samant, P. Pradhan, S. B. Mishra, C. Manohar. Langmuir 9, 894 (1993).10.1021/la00028a004Suche in Google Scholar
[27] E. Okamura, M. Nakahara. J. Phys. Chem. B 103, 3505 (1999).10.1021/jp984621eSuche in Google Scholar
[28] E. Okamura, M. Nakahara. in Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications, A. G. Volkov (Ed.), pp. 775–805, Marcel Dekker, New York (2001).Suche in Google Scholar
[29] S. Zirah, S. A. Kozin, A. K. Mazur, A. Blond, M. Cheminant, I. Ségalas-Milazzo. J. Biol. Chem. 281, 2151 (2006).10.1074/jbc.M504454200Suche in Google Scholar PubMed
[30] T. Dudev, C. Lim. Chem. Rev. 103, 773 (2003).10.1021/cr020467nSuche in Google Scholar PubMed
[31] C. D. Syme, J. H. Viles. Biochim. Biophys. Acta 1764, 246 (2006).10.1016/j.bbapap.2005.09.012Suche in Google Scholar PubMed
[32] K. H. Lim, Y. K. Kim, Y.-T. Chang. Biochemistry 46, 13523 (2007).10.1021/bi701112zSuche in Google Scholar PubMed
[33] P. Faller, C. Hureau. Dalton Trans. 2009, 1080 (2009).10.1039/B813398KSuche in Google Scholar PubMed
[34] P. O. Tsvetkov, A. A. Kulikova, A. V. Golovin, Y. V. Tkachev, A. I. Archakov, S. A. Kozin, A. A. Makarov. Biophys. J. 99, L84 (2010).10.1016/j.bpj.2010.09.015Suche in Google Scholar PubMed PubMed Central
[35] B. Alies, P.-L. Solari, C. Hureau, P. Faller. Inorg. Chem. 51, 701 (2012).10.1021/ic202247mSuche in Google Scholar PubMed
[36] P. Faller, C. Hureau, G. La Penna. Acc. Chem. Res. 47, 2252 (2014).10.1021/ar400293hSuche in Google Scholar PubMed
[37] S. A. Kozin, A. A. Kulikova, A. N. Israte, P. O. Tsvetkov, S. S. Zhokhov, Y. V. Mezentsev, O. I. Kechko, A. S. Ivanov, V. I. Polshakov, A. A. Makarov. Metallomics 7, 422 (2015).10.1039/C4MT00259HSuche in Google Scholar
[38] A. N. Israte, S. A. Kozin, S. S. Zhokhov, A. B. Mantsyzov, O. I. Kechko, A. Pastore, A. A. Makarov, V. I. Polshakov. Sci. Rep. 6, 21734 (2016).10.1038/srep21734Suche in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2019-1201).
© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids