Home A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2
Article Open Access

A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2

  • Guido J. Reiss EMAIL logo
Published/Copyright: May 3, 2019

Abstract

C7H9I5N4O2, monoclinic, P21/c (no. 14), a = 9.46793(10) Å, b = 11.58276(12) Å, c = 16.41497(18) Å, β = 100.844(1)°, Z = 4, V = 1768.00(3) Å3, Rgt(F) = 0.0306, wRref(F2) = 0.0728, T = 130(2) K.

CCDC no.: 1905427

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Black shiny block
Size:0.34 × 0.27 × 0.21 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:8.80 mm−1
Diffractometer, scan mode:Xcalibur- EOS, ω
θmax, completeness:28.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:52671, 4465, 0.030
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4173
N(param)refined:174
Programs:Diamond [1], CrysAlisPRO [2], SHELX [3], [4], [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
I1−0.05603(4)0.41770(3)0.25049(2)0.03655(10)
I20.15381(3)0.25151(2)0.32685(2)0.02540(8)
I30.36362(3)0.07971(3)0.41151(2)0.03031(9)
I40.60290(4)0.26148(3)0.51239(2)0.03868(10)
I50.80523(5)0.40502(3)0.60464(3)0.04772(11)
O10.4504(3)0.1977(3)0.20058(18)0.0233(6)
O20.0587(3)0.3354(3)0.02188(18)0.0211(6)
N10.2572(3)0.2679(3)0.1107(2)0.0178(6)
N20.4066(3)0.3900(3)0.2066(2)0.0176(6)
N30.1428(4)0.5726(3)0.0963(2)0.0183(6)
H30.072(7)0.592(5)0.066(4)0.037(16)*
N40.3278(4)0.5924(3)0.1963(2)0.0191(7)
H40.393(7)0.624(6)0.226(4)0.045(18)*
C10.3766(4)0.2808(4)0.1746(2)0.0179(7)
C20.3208(4)0.4786(3)0.1740(2)0.0158(7)
C30.2051(4)0.4651(3)0.1108(2)0.0151(7)
C40.1638(4)0.3550(3)0.0757(2)0.0165(7)
C50.2179(4)0.6469(4)0.1477(3)0.0203(8)
H50.1979360.7252950.1499800.024*
C60.2273(5)0.1494(4)0.0797(3)0.0272(9)
H6A0.1497440.1505030.0326470.041*
H6B0.2009530.1023920.1226240.041*
H6C0.3116950.1179290.0634720.041*
C70.5251(5)0.4044(4)0.2774(3)0.0304(10)
H7A0.5278700.4830250.2961310.046*
H7B0.6143260.3856260.2608060.046*
H7C0.5107620.3540480.3215570.046*

Source of material

All chemicals were obtained from commercial sources and used as purchased. The Raman spectra were measured using a Bruker MULTIRAM spectrometer (Nd: YAG-laser at 1064 nm; InGaAs detector) with an apodized resolution of 8 cm−1 in the region of 4000−70 cm−1. The title compound was synthesized by dissolving 0.18 g (1 mmol) theophylline and 0.25 g (1 mmol) diiodine in 1 mL of 57% aqueous hydroiodic acid. Heating to ∼350 K yielded a dark colored solution, which produced black, block crystals upon slow cooling to room temperature.

Experimental details

A single crystal of the title compound was directly selected from the mother liquor and rapidly transferred into the cold gas-stream (T = 146 K) of the Xcalibur four-circle diffractometer equipped with an EOS detector [2]. An absorption correction (Gaussian method) was applied [2]. The structure solution and the refinement were successfully carried out using the SHELX program system [3], [4], [5]. Hydrogen atoms which are involved in hydrogen bonds were refined freely. All other hydrogen bonds were added using a riding model with fixed Uiso parameters. The maximum residual peak of 3.63 eÅ−3 and the deepest hole of −2.15 eÅ−3 are found 0.79 and 0.68 Å, respectively, from atom I5.

Comment

Nowadays polyiodides (in the 19th century periodides [6]) are defined as the anionic parts of salt structures that fulfil the general formula I2mnn (n = 2−5, m = integer). Nearly all polyiodides are constructed of I, I3 and I2 units. These ions and the I2 molecule tend to form extended motifs by means of halogen bonds [7], [8], [9], [10]. The triiodide monoanion has been considered as the simplest polyiodide species. Extended theoretical studies on the phenomenon of halogen bonding led to a deeper understanding of its occurrence [11], [12], [13]. Polyiodides are of interest not only because of their structures, but also because of recently reported applications. Short-chain polyiodides play a key role in the charge-transfer processes of the classical dye-sensitized solar cells [14], [15]. Moreover, polyiodide species may be used as ambipolar zinc electrolytes [16] and promoted the development of optimized lithium–iodine redox batteries [17]. Apart from possible applications there is still an academic interest in the synthesis of new, tailored polyiodides using cationic templates whose lengths and shapes may influence the topology of the polyiodide anions [18], [19], [20]. We have shown that semi-flexible cations [21], [22], [23] and heterocyclic cations like pyridinium derivatives [24], [25] or naturally occurring base like nicotine [26] or caffeine [27] are excellent tectons for the synthesis of polyiodide containing salts. Many structures with the formal I5 anion are known [9], [19], [26], but to the best of our knowledge, only one dimeric cyclic (I5)2 anion has been reported [28] until now.

From the reaction of theophylline (systematic name: 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) with hydroiodic acid in the presence of excess iodine, black, shiny, block crystals of the title compound were obtained. The crystalline material loses its excess of iodine slowly at ambient conditions.

The asymmetric unit of the title compound consists of one N-protonated theophyllinium cation, one triiodide anion and one iodine molecule residing on general positions in the space group P21/c. The geometric parameters of the title cation are very similar to those known from the literature (Tab. 2) [29].

In the title structure each theophyllinium cation donates and accepts two hydrogen bonds to three (crystallographically dependent) adjacent cations via its N—H and C=O functional groups, respectively (see the figure). These hydrogen bonds lead to wavy layers. Six symmetry-related cations form annulated ring motifs (see the figure). The NH⋯O hydrogen-bond parameters are (N⋯O distances of 2.671(4) Å and 2.725(4) Å) in the expected ranges [27].

Between adjacent cationic, hydrogen-bonded theophyllinium layers the polyiodide anions are intercalated (see the figure). Each polyiodide I102− moiety consists of two pentaiodide fragments, which show I–I distances which are in the typical range of single bonds to strong secondary interactions (I1–I2: 2.8787(4) Å; I2–I3: 2.9661(4) Å; I4–I5: 2.7636(6) Å; I3⋯I4: 3.3009(5) Å) [9]. The I5⋯I1′ [′ = 1 − x, 1 − y, 1 – z] distance of 3.6582(6) Å is in the typical range of weaker I⋯I interactions, but significantly shorter than any van der Waals distances in the various scales [30]. In the structure of the known cyclic I102−, the four secondary I⋯I distances are crystallographically constrained and are at 3.441(1) Å [28] fairly accurate within the arithmetic mean of the distances derived for the title structure. Further significant I⋯I interactions can be ruled out as the corresponding iodine to iodine distances (>3.9 Å) are very close the sum of the van der Waals radii. The angles within the I102− dianion are in accord with the expectations (I2–I1–I5′: 77.41(1)°; I2–I3–I4: 98.22(1)°; I4–I3–I1–I5′ [′ = 1 – x, 1 – y, 1 – z]). Finally, it is worth mentioning that the hydrogen-bonded layers show a wavy shape fitting excellently with the needs of the neighboring polyiodide anions.

Within the Raman spectrum of the title compound the lines which are characteristic for the triiodide anion [31] are found at 108(vs) and 145(vs) cm−1. For the solid phase of elemental iodine a I–I valence vibration is generally observed at 180 cm−1 [32]. The Raman spectrum of the title compound shows a very strong line at 172 cm−1. As the iodine molecule is weakly connected to two neighboring halogen bond donors, a small shift of this line to lower wave numbers compared to elemental iodine is expected.

Funding source: Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support is gratefully acknowledged (Xcalibur diffractometer; INST 208/533−1

Award Identifier / Grant number: 162659349

Funding statement: The authors thanks E. Hammes and M. Wyshusek for technical support. Support by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support is gratefully acknowledged (Xcalibur diffractometer; INST 208/533−1, project No. 162659349). Funding by the open access fund of the Heinrich-Heine-Universität Düsseldorf is also gratefully acknowledged.

References

1. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 4.5.2, Crystal Impact, Bonn, Germany (2018).Search in Google Scholar

2. Oxford Diffraction: CrysAlisPRO, (version 1.171.33.42), Oxford Diffraction Ltd., Oxford, UK (2009).Search in Google Scholar

3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar

4. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar

5. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B.: ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44 (2011) 1281–1284.10.1107/S0021889811043202Search in Google Scholar

6. Tilden, W. A.: On the periodides of some of the organic bases. J. Chem. Soc. 18 (1865) 99–105.10.1039/JS8651800099Search in Google Scholar

7. Tebbe, K.-F.: Polyhalogen cations and polyhalide anions, in Homoatomic rings, chains and macromolecules of main-group elements. (Eds.: H. Wood, F. Belger), Elsevier, Amsterdam (1977) 551–606.Search in Google Scholar

8. Blake, A. J.; Devillanova, F. A.; Gould, R. O.; Li, W. S.; Lippolis, V.; Parsons, S.; Radek, C.; Schröder, M.: Template self-assembly of polyiodide networks. Chem. Soc. Rev. 27 (1998) 195–205.10.1039/a827195zSearch in Google Scholar

9. Svensson, P. H.; Kloo, L.: Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 103 (2003) 1649–1684.10.1021/cr0204101Search in Google Scholar

10. Kloo, L.; Rosdahl, J.; Svensson, P. H.: On the intra- and intermolecular bonding in polyiodides. Eur. J. Inorg. Chem. 2002 (2002) 1203–1209.10.1002/1099-0682(200205)2002:5<1203::AID-EJIC1203>3.0.CO;2-OSearch in Google Scholar

11. Politzer, P.; Murray, J. S.: Halogen bonding: an interim discussion. ChemPhysChem 14 (2013) 278–294.10.1002/cphc.201200799Search in Google Scholar

12. Politzer, P.; Murray, J. S.; Clark, T.: σ-Hole bonding: a physical interpretation, in halogen bonding I. Vol. 358 (Eds.: P. Metrangolo, G. Resnati), Springer International Publishing, (2015) 19–42.10.1007/128_2014_568Search in Google Scholar

13. Thirman, J.; Engelage, E.; Huber, S. M.; Head-Gordon, M.: Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge transfer in halogen bonding with energy decomposition analysis. Phys. Chem. Chem. Phys. 20 (2018) 905–915.10.1039/C7CP06959FSearch in Google Scholar

14. O’Regan, B.; Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991) 737–739.10.1038/353737a0Search in Google Scholar

15. Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T. J.; Grätzel, M.; Hagfeldt, A.: The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10 (2017) 710–727.10.1039/C6EE03397KSearch in Google Scholar

16. Li, B.; Nie, Z.; Vijayakumar, M.; Li, G.; Liu, J.; Sprenkle, V.; Wang, W.: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6 (2015) 6303.10.1038/ncomms7303Search in Google Scholar PubMed PubMed Central

17. Zhao, Y.; Hong, M.; Bonnet Mercier, N.; Yu, G.; Choi, H. C.; Byon, H. R.: A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14 (2014) 1085–1092.10.1021/nl404784dSearch in Google Scholar PubMed

18. Walbaum, C.; Pantenburg, I.; Meyer, G.: Penta-, Hepta- und Oktaiodid-Anionen in Salzen mit Erdalkalimetall-Kronenether-Kationen. Z. Naturforsch. B65 (2010) 1077–1083.10.1515/znb-2010-0904Search in Google Scholar

19. Walbaum, C.; Pantenburg, I.; Junk, P.; Deacon, G. B.; Meyer, G.: Bulky cations and four different polyiodide anions in [Lu(Db18c6)(H2O)3(thf)6]4(I3)2(I5)6(I8)(I12). Z. Anorg. Allg. Chem. 636 (2010) 1444–1446.10.1002/zaac.201000112Search in Google Scholar

20. Peuronen, A.; Rinta, H.; Lahtinen, M.: N⋯I halogen bonding supported stabilization of a discrete pseudo-linear [I12]2− polyiodide. CrystEngComm 17 (2015) 1736–1740 and references cited therein.10.1039/C4CE01866DSearch in Google Scholar

21. van Megen, M.; Reiss, G. J.: I62− Anion composed of two asymmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 1 (2013) 3–13.10.3390/inorganics1010003Search in Google Scholar

22. van Megen, M.; Jablonka, A.; Reiss, G. J.: Synthesis, structure and thermal decomposition of a new iodine inclusion compound in the 2,2-dimethylpropane-1,3-diamine/HI/I2 system. Z. Naturforsch. B69 (2014) 753–760.10.5560/znb.2014-4088Search in Google Scholar

23. Reiss, G. J.: Two iodine-rich (dimethylphosphoryl)methanaminium iodides. Z. Kristallogr. CM 232 (2017) 789–795.10.1515/zkri-2017-2071Search in Google Scholar

24. Reiss, G. J.; Leske, P. B.: The twinned crystal structure of bis(4-aminopyridin-1-ium) iodide triiodide, C20H28I8N8. Z. Kristallogr. NCS 229 (2014) 452–454 and references cited.10.1515/ncrs-2014-0193Search in Google Scholar

25. Reiss, G. J.; van Megen, M.: Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. B67 (2012) 5–10.10.5560/ZNB.2012.67b0005Search in Google Scholar

26. Reiss, G. J.: I5 polymers with a layered arrangement: synthesis, spectroscopy, and structure of a new polyiodide salt in the nicotine/HI/I2 system. Z. Naturforsch. B70 (2015) 735–740.10.1515/znb-2015-0092Search in Google Scholar

27. Merkelbach, J.; Majewski, M. A.; Reiss, G. J.: Crystal structure of caffeinium triiodide – caffeine (1/1), C16H21I3N8O4. Z. Kristallogr. NCS 233 (2018) 941–944.10.1515/ncrs-2018-0125Search in Google Scholar

28. Wieczorrek, C.: Isolierte I102−-Ringe, ein neues Strukturelement in der Polyiodid-Chemie. Acta Crystallogr. C56 (2000) 1082–1084.10.1107/S0108270100008817Search in Google Scholar

29. Buist, A. R.; Kennedy, A. R.; Manzie, C.: Four salt phases of theophylline. Acta Crystallogr. C70 (2014) 220–224.10.1107/S2053229614000825Search in Google Scholar

30. Hu, S.-Z.; Zhou, Z.-H.; Xie, Z.-X.; Robertson, B. E.: A comparative study of crystallographic van der Waals radii. Z. Kristallogr. CM 229 (2014) 517–523.10.1515/zkri-2014-1726Search in Google Scholar

31. Deplano, P.; Ferraro, J. R.; Mercuri, M. L.; Trogu, E. F.: Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor I2 adduct. Coord. Chem. Rev. 188 (1999) 71–95.10.1016/S0010-8545(98)00238-0Search in Google Scholar

32. Congeduti, A.; Nardone, M.; Postorino, P.: Polarized Raman spectra of a single crystal of iodine. Chem. Phys. 256 (2000) 117–123.10.1016/S0301-0104(00)00085-9Search in Google Scholar

Received: 2019-01-26
Accepted: 2019-03-25
Published Online: 2019-05-03
Published in Print: 2019-06-26

© 2019 Guido J. Reiss, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of (E)-2-(1-((2-aminophenyl)imino)ethyl)-5-fluorophenol, C14H13FN2O
  3. Crystal structure of (E)-2-(1-((2-aminophenyl)imino)ethyl)-4,6-dichlorophenol, C14H12Cl2N2O
  4. The crystal structure of (E)-1-(4-methoxyphenyl)-3-(2-nitrophenyl)triaz-1-ene C8H8N2O4
  5. Crystal structure of (E)-2-(((6-bromopyridin-2-yl)methylene)amino)-3′,6′-bis(ethylamino)-2′,7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one—methanol (1:1), C32H30N5O2Br ⋅ CH4O
  6. Crystal structure of 2,4-pentanedione bis(2,4-dinitrophenylhydrazone), C17H16N8O8
  7. Crystal structure of sodium morpholine-4-carbodithioate, (C5H12NNaO3S2)
  8. Crystal structure of 1,1′-(hexane-1,6-diyl)bis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorido phosphate), C16H28F12N4P2
  9. Crystal structure of 5-(4-chlorophenyl)-3-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole, C21H16ClFN2
  10. Crystal structure of catena-poly[diaqua-bis(3-carboxy-5-methoxybenzoato-κO)-(1,2-bis(imidazol-1-yl)ethane-κ2N:N′)cobalt(II)], C26H28CoN4O12, [Co(C9H6O5)2(H2O)2(C8H10N4)]
  11. The crystal structure of 3-cyclohexyl-1,5-dioxaspiro[5.5]undecane-2,4-dione, C15H22O4
  12. Crystal structure of (2,4-dimethoxybenzyl)triphenylphosphonium trifluoroacetate — trifluoroacetic acid (1/1), C31H27F6O6P
  13. Crystal structure of 4-tert-butyl-1-(2,6-dimethylphenyl)-1H-1,2,3-triazole, C14H19N3
  14. Crystal structure of 1,1′-methylenebis(4-tert-butylpyridinium) tetrachloridocobaltate(II) – dichloromethane (1:1), C20H30Cl6CoN2
  15. Crystal structure of (4,4′-(ethane-1,2-diylbis((nitrilo)(2-furylmethylylidene)))bis(3-methyl-1-phenyl-1H-pyrazol-5-olato-κ4N,N′,O,O′))-nickel(II)), C32H26N6NiO4
  16. Synthesis and crystal structure of bis{((E)-((4-((E)-1-(benzyloxyimino)ethyl)phenyl)imino)methyl)-2-phenolato-κ2N,O}copper(II), C44H38CuN4O4
  17. Crystal structure of catena-poly[diaqua-bis(3,5-dichloropyridine-4-carboxylato-κ1O)-bis(μ2-4,4′-bipyridine-κ2N:N′)cobalt(II)], C22H16Cl4CoN4O6
  18. The crystal structure of 2-(4-chloro-2,6-dinitrophenyl)-1-(4-chloro-3,5-dinitrophenyl)diazene 1-oxide, C12H4Cl2N6O9
  19. The crystal structure of 3-(1H-benzo[d]imidazol-2-yl)-7-chloro-1-cyclopropyl-6-fluoro-1,4-dihydroquinolin — dimethylsulfoxide (1/1), C21H19ClFN3O2S
  20. The crystal structure of dichlorido-bis(1-butyl-1H-imidazole-κN)zinc(II), C14H24Cl2ZnN4
  21. (Z)-N-tert-butyl-1-(2-(3,5-dichlorobenzamido)phenyl) methanimine oxide, C18H18Cl2N2O2
  22. Crystal structure of diaqua-bis(3-carboxy-5-bromoisophthalato-κO)-bis(1-(3-(1H-benzo[d]imidazol-1-yl)propyl)-1H-benzo[d]imidazol-3-ium-κN)nickel(II) bis(3-carboxy-5-bromoisophthalate), C66H54Br4N8NiO18
  23. Crystal structure of poly[aqua(μ2-5-methoxyisophthalato-κ2O,O′:O′′)-(1,2-bis(imidazol-1′-yl)ethane-κ2N:N′)cobalt(II), C34H36Co2N8O12
  24. Crystal structure of poly[diaqua-bis(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′)manganese(II)] terephthalate tetrahydrate, MnC32H38N10O10
  25. Crystal structure of the fluorescent fipronil derivative 5,5′-(methylenebis(azanediyl))bis(1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carbonitrile), C25H6N8O2Cl4F12S2
  26. Crystal structure of the phosphorescent complex diethyldithiophosphonato-κ2S,S′-bis(2-phenylpyridinato-κ2C,N)iridium(III), C26H26N2O2PS2Ir
  27. The crystal structure of 4,10-diethoxy-6H,12H-6,12-epoxydibenzo[b,f][1,5]dioxocine, C18H18O5
  28. Crystal structure of dichlorido-bis(N-benzyl-2-(quinolin-8-yloxy)acetamide-κ2N,O)copper(II) — ethyl acetate (1/1), C38H36N4O6Cl2Cu
  29. Synthesis and crystal structure of bis{4-methyl-2-((E)-((4-((E)-1-(benzyloxyimino)ethyl)phenyl)imino)methyl)phenolato-κ3N,O,O}copper(II), C92H84Cu2N8O8
  30. The crystal structure of 1,3,5-trinitro-4,6-diazidobenzene, C6HN9O6
  31. Crystal structure 1-cinnamyl-2-((Z)-styryl)-1H-benzo[d]imidazole — methanol (1/1), C24H20N2 ⋅ CH4O
  32. The crystal structure of poly[m2-aqua-tetraaqua-bis(m9-4-formylbenzene-1,3-disulfonato)tetrasodium(I) hydrate, C14H18O19S4Na4
  33. Crystal structure of 2-((2,8-bis(trifluoromethyl)quinolin-4-yl)(hydroxy)methyl)piperidin-1-ium trifluoroacetate, [C17H17F6N2O][C2F3O2]
  34. The crystal structure of bis(ferrocenecarboxylato-κ2O,O′)bis[4-(dimethylamino)pyridine-κN]copper(II) — acetonitrile(1/2), C40H44CuO4Fe2N6
  35. Crystal structure of poly[di-μ2-aqua)-diaqua-bis(μ6-4,4′,4′′-(benzene-1,3,5-triyltris(oxy))tribenzoato-κ6O1:O2:O3:O3:O5:O6)tricadmium(II)] dihydrate, C54H42Cd3O24
  36. The crystal structure of dichlorido(1,3-bis(2,6-diisopropyl-phenyl)-1H-3λ4-imidazol-2-yl)(3-phenyl-pyridine-κN)palladium(IV), C38H45N3Cl2Pd
  37. The crystal structure of 2-chloro-4-(prop-2-yn-1-yloxy)-6-phenyl-1,3,5-triazine, C12H8ClN3O
  38. The crystal structure of 2,6-di-tert-butyl-4-(phenyl(phenylsulfonyl)methyl)phenol, C27H32O3S
  39. Crystal structure of bis{μ2-bis{(((((1-methoxyimino)ethyl)phenyl)imino)methyl)-2-phenolato-κ3N,O:O}copper(II)}, C68H68Cu2N8O8
  40. Crystal structure of catena-poly[tetraaqua-bis(μ2-2-(4-carboxylatophenoxy)benzoato-κ2O:O′)-pentakis(pyridine-κ1N)dinickel(II)], C53H47N5Ni2O13
  41. Synthesis and crystal structure of 1-(2,6-dichloro-4-trifluoromethyl-phenyl)-5-(3-methoxy-benzylamino)-4-trifluoromethanesulfinyl-1H-pyrazole-3-carbonitrile, C20H12N4Cl2F6O2S
  42. Redetermination of the crystal structure of bis(μ2-di-ethyldithiocarbamato-κ3S,S′:S3S:S: S′)-hexacarbonyl-di-rhenium(I), C16H20N2O6Re2S4
  43. The crystal structure of (E)-N′-((2-hydroxynaphthalen-1-yl)methylene)-2-phenylacetohydrazide, C19H16O2N2
  44. Crystal structure of 6-hydroxy-4,8,11b-trimethyltetradecayhdro-8,11-epoxy-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid – methanol (1/1), C20H30O4
  45. The crystal structure of aqua-bis(3-acetyl-2-oxo-2H-chromen-4-olato-κ2O,O′)zinc(II) monohydrate, C22H18O10Zn
  46. Crystal structure of poly[bis(μ2-4-bromoisophthalate-κ2O:O′)-tris(μ2-1-(3-((1H-1,2,4-triazol-1-yl)methyl)benzyl)-1H-1,2,4-triazole-κ2N:N′)dicobalt(II)] monohydrate, C26H23CoN9O5Br
  47. A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2
  48. Crystal structure of catena-poly[diaqua-bis(μ2-4-((4-(pyridin-2-ylmethoxy)phenyl)diazenyl)benzoato-κ3O,O′:N)cadmium(III)], Cd(C19H14O3N3)2(H2O)
  49. Crystal structure of catena-poly[(μ2-4,4′-bipyridyl-κN,N′)-bis(O,O′-dimethyldithiophosphato-κS)-zinc(II)], {C14H20N2O4P2S4Zn}n
  50. Crystal structure of 3-amino-2-hydroxy-6-methoxybenzamide hydrate, C16H22N4O7
  51. Crystal structure of hemikis(cyclohexane-1,4-diammonium) (pyridine-2-carboxylate), [C6H16N2]0.5[C6H4NO2]
  52. Crystal structure of 2-chloro-4-(prop-2-yn-1-yloxy)-6-(thiophen-2-yl)-1,3,5-triazine, C10H6ClN3OS
  53. The crystal structure of 3-butyl-1-methyl-1H-imidazol-3-ium catena-poly[tris(μ2-bromido-κ2Br:Br)lead(II)], C8H15Br3N2Pb
  54. Crystal structure of 3-(5-amino-1H-1,2,4-triazol-3-yl)-1-(piperidin-1-yl)propan-1-one, C10H17N5O
  55. Crystal structure of aqua-2,2′,2′′-(((nitrilo-κN-tris(ethane-2,1-diyl))tris(azanylylidene-κ3N′,N′′,N′′′))tris(methanylylidene))tris(4-chlorophenolato-κ3O,O′,O′′)neodymium(III), C27H26Cl3N4NdO4
  56. Crystal structure of dichlorido-(μ2-2,2′-(diazene-1,2-diyl)bis(benzen-1-ido)-κ2C:C′)dimercury(II), C12H8Cl2Hg2N2
  57. Crystal structure of (3E,5E)-3,5-bis(4-cyanobenzylidene)-1-((4-fluorophenyl)sulfonyl)piperidin-4-one, C27H18FN3O3S
  58. Crystal structure of dichlorido(pyridine-κN)(2,4,6-tri-2-pyridyl-1,3,5-triazine-κ3N2,N1,N6)nickel(II), C23H17Cl2N7Ni
  59. Redetermination of the crystal structure of tetrakis(4-chlorobenzyl)tin(IV), C28H24Cl4Sn
  60. The crystal structure of 2,6-bis(pyridin-1-ium-3-ylmethyl)hexahydro-4,8-ethenopyrrolo-[3,4-f] isoindole-1,3,5,7-tetrone tetrachloridocuprate(II) monohydrate, C24H24Cl4CuN4O5
  61. Crystal structure of cyclo-[octaaqua-tetrakis(μ2-5,5′-(1H-imidazole-4,5-diyl)bis(tetrazol-2-ido)-κ4N,N′,N′′,N′′′)tetramagnesium(II)], C20H24N40O8Mg4
  62. The crystal structure of a matrine derivative, 13-(4-Cl-pyrrole)-matrine, C18H26ClN4O
  63. Crystal structure of (dibenzyl sulphoxide-κO)bis(2-chlorobenzyl-κC1)dichloridotin(IV), C28H26Cl4OSSn
  64. Crystal structure of catena-poly[(μ2-azido-κ2N:N)(μ2-4-cyanobenzoato-κ2O:O′)-(μ2-methanol-κ2O:O)copper(II)], C9H8CuN4O3
  65. Crystal structure of 1,1′-dibenzyl-3,3′-dicyano-1,1′,4,4′-tetrahydro-4,4′-bipyridine, C26H22N4
  66. Crystal structure of (2-bromobenzyl)((1-bromonaphthalen-2-yl)methyl)sulfane, C18H14Br2S
  67. Crystal structure of 2-(4-ammoniocyclohexyl)-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium 2-[(2-carboxylatophenyl)disulfanyl]benzoate dihydrate, [C18H22N4][C14H8O4S2] ⋅ 2H2O
  68. Crystal structure of (E)-N-((3R,5S,10S, 13S,14S,17S)-17-((S)-1-(dimethylamino)ethyl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)-2-methylbut-2-enamide – water – methanol (1/1/1), C29H54N2O3
  69. Crystal structure of methyl 2-(4-(3-(2,4-difluorophenyl)pyrazolo[1,5-a]pyrimidin-6-yl)phenyl)acetate, C21H15F2N3O2
  70. Crystal structure of poly[triaqua-(μ4-benzene-1,3,5-tricarboxylato-κ5O1,O2:O3:O4:O5)-(μ2-5-(3-pyridyl)tetrazolato-κ2N1:N3)dizinc(II)], C15H13N5O9Zn2
  71. Crystal structure of N-(3-methylphenyl)(propan-2-yloxy)carbothioamide, C11H15NOS
  72. Crystal structure of poly[(μ2-1,3-bis(imidazol-1-ylmethyl)benzene-κ2N:N′)(nitrato-κ1O)cadmium(II)] — water (2/1), C28H32CdN10O7
  73. Crystal structure of 4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione, C8H7N3S
  74. Crystal structure of benzyltrichloridobis(1H-pyrazole-κ2N)tin(IV), C13H15Cl3N4Sn
  75. Crystal structure of chlorido-4-fluorobenzyl-bis(2-methylquinolin-8-olato-κ2N,O)tin(IV), C27H22ClFN2O2Sn
  76. Crystal structure of tetrakis(O,O′-diisopropyldithiophosphato-κ2S,S′)-(μ2-1,2-bis(4-pyridylmethylene)hydrazine-κ2N:N′)zinc(II), C36H66N4O8P4S8Zn2
  77. Crystal structure of tetrabutylammonium 4,4-oxydibenzoate – boric acid – water (1/2/6) C46H98B2N2O17
  78. Redetermination of the crystal structure of catena-poly[[tribenzyltin(IV)]-(μ2-pyridine-4-carboxylato-κ2N:O)], C27H25NO2Sn
  79. The synthysis and crystal structure of cyclohexyl 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxylate, C18H15N3Cl2F6O3S
  80. The crystal structure of 5,7-bis(2-hydroxyethoxy)-2-phenyl-4H-chromen-4-one, C19H18O6
  81. Synthesis and crystal structure of (±)-Ethyl 5′-(difluoromethyl)-2-oxo-4′,5′-dihydrospiro[indoline-3,3′-pyrazole]-4′-carboxylate, C14H13F2N3O3
Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0082/html
Scroll to top button