Startseite Metallurgical properties of boride layers formed in pack boronized cementation steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metallurgical properties of boride layers formed in pack boronized cementation steel

  • Tanju Teker EMAIL logo und Murat Sarı

    Murat Sarı was born in Ankara in 1991. He graduated from the Adıyaman University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Adıyaman, Turkey, in 2017. He received his M.Sc. degree from the Adıyaman University, Adıyaman, Turkey, in 2019. His research interests include metal coating techniques and welding methods.

Veröffentlicht/Copyright: 6. September 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present study, cementation steel was exposed to boronizing process at 950 °C for 6, 8, and 10 h. Microstructural changes on the surface of the samples after boron operation were inspected by optical microscope, scanning electron microscope, energy-dispersive spectroscopy, X-ray diffraction, electron back-scatter diffraction, and elemental mapping analysis. In addition, surface roughness, microhardness, and boride layer thicknesses were measured. The boride layers deposited on the cementation steel consisted either single or double phases. The level of boride deposit of all samples was achieved from 90 to 156 μm. The boride layer created at 950 °C for 10 h involved the FeB and Fe2B. The boride layers had a much higher hardness value than the substrate material due to the presence of FeB and Fe2B.


Corresponding author: Tanju Teker, Department of Manufacturing Engineering, Faculty of Technology, Sivas Cumhuriyet University, Sivas 58140, Turkey, E-mail:

About the author

Murat Sarı

Murat Sarı was born in Ankara in 1991. He graduated from the Adıyaman University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Adıyaman, Turkey, in 2017. He received his M.Sc. degree from the Adıyaman University, Adıyaman, Turkey, in 2019. His research interests include metal coating techniques and welding methods.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was carried out under Grant Number: 2018/0002 of Adıyaman University Scientific Research Projects Unit.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Z. N. Abdellah, B. Boumaali, and M. Keddam, “Computer simulation of boronizing kinetics for a TB2 alloy,” Mater. Test., vol. 63, no. 12, pp. 1130–1135, 2021, https://doi.org/10.1515/mt-2021-0051.Suche in Google Scholar

[2] V. Jain and G. Sundararajan, “Influence of the pack thickness of the boronizing mixture on the boriding of steel,” Surf. Coat. Technol., vol. 149, no. 1, pp. 21–26, 2002, https://doi.org/10.1016/S0257-8972(01)01385-8.Suche in Google Scholar

[3] S. Aich and K. S. Ravi Chandran, “TiB whisker coating on titanium surfaces by solid-state diffusion: synthesis, microstructure, and mechanical properties,” Metall. Mater. Trans. A, vol. 33, pp. 3489–3498, 2012, https://doi.org/10.1007/s11661-002-0336-6.Suche in Google Scholar

[4] X. Tian, Y. L. Yang, S. J. Sun, J. An, Y. Lu, and Z. G. Wang, “Tensile properties of boronized N80 steel tube cooled by different methods,” J. Mater. Eng. Perform., vol. 18, pp. 162–167, 2009, https://doi.org/10.1007/s11665-008-9270-0.Suche in Google Scholar

[5] N. Gidikova, “Vanadium boride coatings on steel,” Mater. Sci. Eng. A, vol. 278, nos. 1–2, pp. 181–186, 2000, https://doi.org/10.1016/S0921-5093(99)00596-1.Suche in Google Scholar

[6] C. H. Xu, J. K. Xi, and W. Gao, “Improving the mechanical properties of boronized layers by superplastic boronizing,” J. Mater. Process. Technol., vol. 65, nos. 1–3, pp. 94–98, 1997, https://doi.org/10.1016/0924-0136(95)02247-3.Suche in Google Scholar

[7] J. Li and B. Li, “Preparation of the TiB2 coatings by electroplating in molten salts,” Mater. Lett., vol. 61, no. 6, pp. 1274–1278, 2007, https://doi.org/10.1016/j.matlet.2006.07.007.Suche in Google Scholar

[8] U. Fastner, T. Steck, A. Pascual, G. Fafilek, and G. E. Nauer, “Electrochemical deposition of TiB2 in high temperature molten salts,” J. Alloys Compd., vol. 452, no. 1, pp. 32–35, 2008, https://doi.org/10.1016/j.jallcom.2007.02.130.Suche in Google Scholar

[9] M. Kulka and A. Pertek, “Microstructure and properties of borided 41Cr4 steel afterlaser surface modification with re-melting,” Appl. Surf. Sci., vol. 214, nos. 1–4, pp. 278–288, 2003, https://doi.org/10.1016/S0169-4332(03)00500-2.Suche in Google Scholar

[10] X. C. Xin and O. Menglan, “A mechanical explanation for the influence of residual stress on the wear resistance of borided steel,” Wear, vol. 137, no. 2, pp. 151–159, 2010, https://doi.org/10.1016/0043-1648(90)90132-T.Suche in Google Scholar

[11] C. Li, B. Shen, G. Li, and C. Yang, “Effect of boronizing temperature and time on microstructure and abrasion wear resistance of Cr12Mn2V2 high chromium cast iron,” Surf. Coat. Technol., vol. 202, pp. 5882–5886, 2008, https://doi.org/10.1016/j.surfcoat.2008.06.170.Suche in Google Scholar

[12] G. Rodríguez-Castro, I. Campos-Silva, J. Martínez-Trinidad, U. Figueroa-López, D. Meléndez-Morales, and J. Vargas-Hernández, “Effect of boriding on the mechanical properties of AISI 1045 steel,” Adv. Mater. Res., vol. 65, pp. 63–68, 2009, https://doi.org/10.4028/www.scientific.net/AMR.65.63.Suche in Google Scholar

[13] K. Bartsch and A. Leonhardt, “Formation of iron boride layers on steel by d.c.-plasma boriding and deposition processes,” Surf. Coat. Technol., vols. 116–119, pp. 386–390, 1999, https://doi.org/10.1016/S0257-8972(99)00078-X.Suche in Google Scholar

[14] C. Martini, G. Palombarini, and M. Carbucicchio, “Mechanism of thermochemical growth of iron borides on iron,” J. Mater. Sci., vol. 39, pp. 933–937, 2004, https://doi.org/10.1023/B:JMSC.0000012924.74578.87.10.1023/B:JMSC.0000012924.74578.87Suche in Google Scholar

[15] L. G. Yu, X. J. Chen, K. A. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics,” Acta Mater., vol. 53, no. 8, pp. 2361–2368, 2005, https://doi.org/10.1016/j.actamat.2005.01.043.Suche in Google Scholar

[16] I. Campos, J. Oseguera, U. Figueroa, J. A. Garcı́a, O. Bautista, and G. Kelemenis, “Kinetic study of boron diffusion in the paste-boriding process,” Mater. Sci. Eng. A, vol. 352, nos. 1–2, pp. 261–265, 2003, https://doi.org/10.1016/S0921-5093(02)00910-3.Suche in Google Scholar

[17] O. Allaoui, N. Bouaouadja, and G. Saindernan, “Characterization of boronized layers on a XC38 steel,” Surf. Coat. Technol., vol. 201, no. 6, pp. 3475–3482, 2006, https://doi.org/10.1016/j.surfcoat.2006.07.238.Suche in Google Scholar

[18] M. Keddam and S. M. Chentouf, “A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding,” Appl. Surf. Sci., vol. 252, no. 2, pp. 393–399, 2005, https://doi.org/10.1016/j.apsusc.2005.01.016.Suche in Google Scholar

[19] J. Lubas, “Tribological properties of surface layer with boron in friction pairs,” Surf. Rev. Lett., vol. 16, no. 5, pp. 767–773, 2006, https://doi.org/10.1142/S0218625X09013232.Suche in Google Scholar

[20] I. Campos, G. Ramirez, U. Figueroa, J. Martinez, and O. Morales, “Evaluation of boron mobility on the phases FeB, Fe2B and diffusion zone in AISI 1045 and M2 steels,” Appl. Surf. Sci., vol. 253, no. 7, pp. 3469–3475, 2007, https://doi.org/10.1016/j.apsusc.2006.07.046.Suche in Google Scholar

[21] T. Teker and E. M. Karakurt, “Characterization of the boron layer formed by pack boronizing of binary iron-niobium alloys,” Mater. Test., vol. 61, no. 9, pp. 875–879, 2019, https://doi.org/10.3139/120.111396.Suche in Google Scholar

Published Online: 2022-09-06
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2022-0098/html?lang=de
Button zum nach oben scrollen