Home Structural properties of sputter-deposited nanocrystalline Ni thin films
Article
Licensed
Unlicensed Requires Authentication

Structural properties of sputter-deposited nanocrystalline Ni thin films

  • Murat Danışman EMAIL logo
Published/Copyright: September 6, 2022
Become an author with De Gruyter Brill

Abstract

For this study, Ni thin films were deposited on a glass substrate by using 200, 300, and 400 W direct-current magnetron sputtering method for observing the effect of sputtering power on the structural properties of thin films. Grain size, crystallinity, orientation, and texture of the deposited thin films were observed and evaluated by X-ray diffraction (XRD) analysis. According to XRD analysis, all thin films presented crystalline atomic structure. Furthermore, the effect of texture on the structural properties were observed using strain analysis and grain sizes that were calculated by Scherrer’s method and Williamson-Hall analysis. The analysis revealed that the grain size of sputter-deposited thin films increased linearly with respect to the increasing sputtering power. Additionally, the elastic modulus and indentation hardness of the samples were measured by nanoindentation method, and the results were evaluated in terms of grain size and texture. The highest grain size, 7.30 nm, was observed on a 400 W sputter-deposited sample, which also had the highest elastic modulus and indentation hardness values as 98 and 3.6 GPa, respectively.


Corresponding author: Murat Danışman, Metallurgical and Materials Engineering Department, İstanbul Gedik University, Istanbul, 34953, Turkey, E-mail:

Acknowledgment

The author thanks the Yildiz Technical University, Faculty of Chemistry-Metallurgy, Metallurgical and Materials Engineering Department. The author also thanks his teacher, Prof. Dr. Nurhan Cansever.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

[1] M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci., vol. 51, pp. 427–556, 2006, https://doi.org/10.1016/j.pmatsci.2005.08.003.Search in Google Scholar

[2] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh, “Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel,” Acta Mater., vol. 51, no. 17, pp. 5159–5172, 2003, https://doi.org/10.1016/S1359-6454(03)00365-3.Search in Google Scholar

[3] G. Singla, K. Singh, and O. P. Pandey, “Williamson-Hall study on synthesized nanocrystalline tungsten carbide (WC),” Appl. Phys. A: Mater. Sci. Process., vol. 113, no. 1, pp. 237–242, 2013, https://doi.org/10.1007/s00339-012-7531-0.Search in Google Scholar

[4] K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, “Deformation of electrodeposited nanocrystalline nickel,” Acta Mater., vol. 51, no. 2, pp. 387–405, 2003, https://doi.org/10.1016/S1359-6454(02)00421-4.Search in Google Scholar

[5] J. Kim, C.-Y. Lin, W. Xing, M. L. Mecartney, E. O. Potma, and R. M. Penner, “Laser annealing of nanocrystalline gold nanowires,” ACS Appl. Mater. Interfaces, vol. 5, no. 15, pp. 6808–6814, 2013, https://doi.org/10.1021/am401716u.Search in Google Scholar PubMed

[6] M. Danışman and N. Cansever, “NiCr thin film strain gauges fabricated on glass substrates,” Mater. Test., vol. 55, no. 10, pp. 755–758, 2013, https://doi.org/10.3139/120.110498.Search in Google Scholar

[7] L. Fu, J. Yang, Q. Bi, and W. Liu, “Electrochemical behavior of nanocrystalline Fe88Si12 alloy in 3.5% NaCl solution,” Mater. Sci. Appl., vol. 2, no. 5, pp. 435–438, 2011, https://doi.org/10.4236/msa.2011.25057.Search in Google Scholar

[8] M. Danışman, “The corrosion behavior of nanocrystalline nickel based thin films,” Mater. Chem. Phys., vol. 171, pp. 276–280, 2016, https://doi.org/10.1016/j.matchemphys.2016.01.018.Search in Google Scholar

[9] R. Mishra and R. Balasubramaniam, “Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel,” Corros. Sci., vol. 46, no. 12, pp. 3019–3029, 2004, https://doi.org/10.1016/j.corsci.2004.04.007.Search in Google Scholar

[10] B. Yang, “Influence of annealing on the microstructure and mechanical properties of electrodeposited nanocrystalline nickel,” Mater. Sci. Forum, vol. 683, pp. 103–112, 2011, https://doi.org/10.4028/www.scientific.net/MSF.683.103.Search in Google Scholar

[11] H. Mu, J. Seok, and R. Y. Lin, “Nickel thin film coatings on steels with electroless plating and sputter deposition,” J. Electrochem. Soc., vol. 150, no. 2, pp. C62–C67, 2003, https://doi.org/10.1149/1.1534711.Search in Google Scholar

[12] T. Otiti, Y. Cao, S. M. Allameh, Z. Zong, O. Akogwu, and W. O. Soboyejo, “Nanoindentation measurements of the mechanical properties of Ni thin films: effects of film microstructure and substrate modulus,” Mater. Manuf. Proc., vol. 22, no. 2, pp. 195–205, 2007, https://doi.org/10.1080/10426910601062313.Search in Google Scholar

[13] A. K. Kulovits, G. Facco, and J. M. K. Wiezorek, “Grain size determination in nano-scale polycrystalline aggregates by precession illumination-hollow cone dark field imaging in the transmission electron microscope,” Mater. Charact., vol. 63, pp. 17–26, 2012, https://doi.org/10.1016/j.matchar.2011.10.003.Search in Google Scholar

[14] C. A. Schuh, “Nanoindentation studies of materials,” Mater. Today, vol. 9, no. 5, pp. 32–40, 2006, https://doi.org/10.1016/S1369-7021(06)71495-X.Search in Google Scholar

[15] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., vol. 7, no. 6, pp. 1564–1583, 1992, https://doi.org/10.1557/JMR.1992.1564.Search in Google Scholar

[16] P. M. Kibasomba, S. Dhlamini, M. Maaza, et al.., “Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method,” Results Phys., vol. 9, pp. 628–635, 2018, https://doi.org/10.1016/j.rinp.2018.03.008.Search in Google Scholar

[17] A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD,” World J. Nano Sci. Eng., vol. 2, no. 3, pp. 154–160, 2012, https://doi.org/10.4236/wjnse.2012.23020.Search in Google Scholar

[18] N. Radic, P. Dubcek, S. Bernstorff, I. Djerdj, and A. M. Tonejc, “Structural study of nanocrystalline nickel thin films,” J. Appl. Crystallogr., vol. 40, pp. 377–382, 2007, https://doi.org/10.1107/S0021889807004682.Search in Google Scholar

[19] L. Qin, J. Xu, J. Lian, Z. Jiang, and Q. Jiang, “A novel electrodeposited nanostructured Ni coatingwith grain size gradient distribution,” Surf. Coat. Technol., vol. 203, nos. 1–2, pp. 142–147, 2008, https://doi.org/10.1016/j.surfcoat.2008.08.044.Search in Google Scholar

[20] T. Otiti, G. Ekosse, and T. Sathiaraj, “Understanding nickel thin film crystallization using X-ray diffractometry,” J. Appl. Sci. Environ. Manage., vol. 11, no. 2, pp. 57–60, 2010, https://doi.org/10.4314/jasem.v11i2.54986.Search in Google Scholar

[21] Z. Budrovic, H. Van Swygenhoven, P. M. Derlet, S. Van Petegem, and B. Schmitt, “Plastic deformation with reversible peak broadening in nanocrystalline nickel,” Science, vol. 304, no. 5668, pp. 273–276, 2004, https://doi.org/10.1126/science.1095071.Search in Google Scholar PubMed

[22] V. Bilgin, S. Kose, F. Atay, and I. Akyuz, “The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films,” Mater. Chem. Phys., vol. 94, no. 1, pp. 103–108, 2005, https://doi.org/10.1016/j.matchemphys.2005.04.028.Search in Google Scholar

[23] F. Sánchez-Bajo and F. L. Cumbrera, “The use of the pseudo-voigt function in the variance method of X-ray line-broadening analysis,” J. Appl. Crystallogr., vol. 30, no. 4, pp. 427–430, 1997, https://doi.org/10.1107/S0021889896015464.Search in Google Scholar

[24] T. Ida, M. Ando, and H. Toraya, “Extended pseudo-Voigt function for approximating the Voigt profile,” J. Appl. Crystallogr., vol. 33, no. 6, pp. 1311–1316, 2000, https://doi.org/10.1107/S0021889800010219.Search in Google Scholar

[25] R. Mishra, B. Basu, and R. Balasubramaniam, “Effect of grain size on the tribological behavior of nanocrystalline nickel,” Mater. Sci. Eng., A, vol. 373, no. 1–2, pp. 370–373, 2004, https://doi.org/10.1016/j.msea.2003.09.107.Search in Google Scholar

[26] B. D. Cullity, Elements of X-Ray Diffraction, Massachusetts, Addison-Wesley Publishing Company, 1956.Search in Google Scholar

[27] L. D. L. S. Valladares, A. Ionescu, S. Holmes, et al.., “Characterization of Ni thin films following thermal oxidation in air,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., vol. 32, no. 5, 2014, Art no. 051808, https://doi.org/10.1116/1.4895846.Search in Google Scholar

[28] F. T. L. Muniz, M. A. R. Miranda, C. Morilla Dos Santos, and J. M. Sasaki, “The Scherrer equation and the dynamical theory of X-ray diffraction,” Acta Crystallogr., Sect. A: Found. Adv., vol. 72, no. 3, pp. 385–390, 2016, https://doi.org/10.1107/S205327331600365X.Search in Google Scholar PubMed

[29] J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: a survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr., vol. 11, pp. 102–113, 1978, https://doi.org/10.1107/S0021889878012844.Search in Google Scholar

[30] D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Mater. Sci., vol. 46, no. 4, pp. 855–874, 2011, https://doi.org/10.1007/s10853-010-5113-0.Search in Google Scholar

[31] R. Delhez and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile Analysis,” Fresenius’ Z. Anal. Chem., vol. 312, pp. 1–16, 1982, https://doi.org/10.1007/BF00482725.Search in Google Scholar

[32] R. Sivakami, S. Dhanuskodi, and R. Karvembu, “Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods,” Spectrochim. Acta, Part A, vol. 152, pp. 43–50, 2016, https://doi.org/10.1016/j.saa.2015.07.008.Search in Google Scholar PubMed

[33] V. Biju, N. Sugathan, V. Vrinda, and S. L. Salini, “Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening,” J. Mater. Sci., vol. 43, no. 4, pp. 1175–1179, 2008, https://doi.org/10.1007/s10853-007-2300-8.Search in Google Scholar

[34] C. Kim and S. Hong, “Residual strain measurement of Cu2ZnSnS4 thin film using X-ray line broadening,” Mol. Cryst. Liq. Cryst., vol. 663, no. 1, pp. 21–27, 2018, https://doi.org/10.1080/15421406.2018.1467637.Search in Google Scholar

[35] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol., vol. 11, no. 4, pp. 666–670, 1974, https://doi.org/10.1116/1.1312732.Search in Google Scholar

[36] T. J. Vink, W. Walrave, J. L. C. Daams, A. G. Dirks, M. A. J. Somers, and K. J. A. Van Den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys., vol. 74, no. 2, pp. 988–995, 1993, https://doi.org/10.1063/1.354842.Search in Google Scholar

[37] T. J. Vink, M. A. J. Somers, J. L. C. Daams, and A. G. Dirks, “Stress, strain, and microstructure of sputter-deposited Mo thin films,” J. Appl. Phys., vol. 70, no. 8, pp. 4301–4308, 1991, https://doi.org/10.1063/1.349108.Search in Google Scholar

[38] M. Vopsaroiu, M. J. Thwaites, S. Rand, P. J. Grundy, and K. O’Grady, “Novel sputtering technology for grain-size control,” IEEE Trans. Magn., vol. 40, no. 4 II, pp. 2443–2445, 2004, https://doi.org/10.1109/TMAG.2004.828971.Search in Google Scholar

[39] D. Desideri, T. Cavallin, A. Maschio, and M. Natali, “Characterisation of copper thin films deposited on machinable glass-ceramic and glass by DC magnetron sputtering,” IET Sci., Meas. Technol., vol. 8, no. 1, pp. 1–8, 2014, https://doi.org/10.1049/iet-smt.2012.0049.Search in Google Scholar

[40] P. Valat-Villain, J. Durinck, and P. O. Renault, “Grain size dependence of elastic moduli in nanocrystalline tungsten,” J. Nanomater., vol. 2017, pp. 1–6, 2017, https://doi.org/10.1155/2017/3620910.Search in Google Scholar

[41] S. N. Naik and S. M. Walley, “The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals,” J. Mater. Sci., vol. 55, no. 7, pp. 2661–2681, 2020, https://doi.org/10.1007/s10853-019-04160-w.Search in Google Scholar

[42] B. Klusemann, S. Bargmann, and Y. Estrin, “Fourth-order strain-gradient phase mixture model for nanocrystalline fcc materials,” Modell. Simul. Mater. Sci. Eng., vol. 24, no. 8, pp. 1–23, 2016, https://doi.org/10.1088/0965-0393/24/8/085016.Search in Google Scholar

[43] S. J. Zhao, K. Albe, and H. Hahn, “Grain size dependence of the bulk modulus of nanocrystalline nickel,” Scr. Mater., vol. 55, no. 5, pp. 473–476, 2006, https://doi.org/10.1016/j.scriptamat.2006.04.043.Search in Google Scholar

[44] J. Lian, S. W. Lee, L. Valdevit, M. I. Baskes, and J. R. Greer, “Emergence of film-thickness- and grain-size-dependent elastic properties in nanocrystalline thin films,” Scr. Mater., vol. 68, no. 5, pp. 261–264, 2013, https://doi.org/10.1016/j.scriptamat.2012.10.031.Search in Google Scholar

[45] H. Hua, F. Xie, Y. Pei, et al.., “Skeletal Ni catalysts prepared from Ni-Al alloys rapidly quenched at different rates: texture, structure and catalytic performance in chemoselective hydrogenation of 2-ethylanthraquinone,” J. Catal., vol. 237, no. 1, pp. 143–151, 2006, https://doi.org/10.1016/j.jcat.2005.11.001.Search in Google Scholar

[46] M. Danışman, M. Kocabaş, and N. Cansever, “Diffusion characteristics of plasma nitrided hard chromium on AISI 1010 steel,” Mater. Test, vol. 57, no. 5, pp. 443–446, 2015, https://doi.org/10.3139/120.110736.Search in Google Scholar

[47] M. Danışman and N. Cansever, “Effect of Cr content on mechanical and electrical properties of Ni-Cr thin films,” J. Alloys Compd., vol. 493, nos. 1–2, pp. 649–653, 2010, https://doi.org/10.1016/j.jallcom.2009.12.180.Search in Google Scholar

[48] Y. Liang, P. Wang, Y. Wang, et al.., “Growth mechanisms and the effects of deposition parameters on the structure and properties of high entropy film by magnetron sputtering,” Materials, vol. 12, no. 18, pp. 1–16, 2019, https://doi.org/10.3390/ma12183008.Search in Google Scholar PubMed PubMed Central

Published Online: 2022-09-06
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2022-0039/html
Scroll to top button