Home Tension-compression asymmetry of quadruple CuCoNiBe alloys processed by high-temperature multi-pass equal channel angular pressing (ECAP)
Article
Licensed
Unlicensed Requires Authentication

Tension-compression asymmetry of quadruple CuCoNiBe alloys processed by high-temperature multi-pass equal channel angular pressing (ECAP)

  • Cagatay Elibol ORCID logo EMAIL logo
Published/Copyright: September 6, 2022
Become an author with De Gruyter Brill

Abstract

Among copper alloys, the precipitation (age) hardening quadruple CuCoNiBe alloys due to their superior mechanical properties in terms of the highest strength and elasticity achieved by peak aging have been used over the years in a wide range of industrial applications including aircrafts, coil systems, blast-proof materials, and molding dies. Combined thermomechanical treatment (i.e., equal channel angular pressing [ECAP] processing followed by post-ECAP aging) can result in a further enhancement of the strength of CuCoNiBe alloys due to the grain refinement and the formation of fine precipitates from α-Cu supersaturated solid solution. In this study, for the first time, the effect of severe plastic deformation by ECAP processing on the mechanical behavior of CuCoNiBe alloys is discussed thoroughly based on the material responses to tensile and compressive loading conditions. The results show that, besides a considerable strength enhancement, ECAP processing leads to a strong tension-compression asymmetry and significantly accelerated precipitation kinetics in CuCoNiBe alloys.


Corresponding author: Cagatay Elibol, Department of Materials Science and Technology, Turkish-German University, Istanbul 34820, Turkey, E-mail:

Funding source: Scientific Research Projects Unit of Turkish-German University

Award Identifier / Grant number: 2019BF0004

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Scientific Research Projects Unit of Turkish-German University [Award Number: 2019BF0004].

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] K. Edalati, K. Imamura, T. Kiss, and Z. Horita, “Equal-channel angular pressing and high-pressure torsion of pure copper: evolution of electrical conductivity and hardness with strain,” Mater. Trans., vol. 53, no. 1, pp. 123–127, 2012, https://doi.org/10.2320/matertrans.MD201109.Search in Google Scholar

[2] Q. Lei, Z. Li, M. P. Wang, L. Zhang, Z. Xiao, and Y. L. Jia, “The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging,” Mater. Sci. Eng. A, vol. 527, nos. 24–25, pp. 6728–6733, 2010, https://doi.org/10.1016/j.msea.2010.07.023.Search in Google Scholar

[3] S. Chenna Krishna, J. Srinath, A. K. Jha, B. Pant, S. C. Sharma, and K. M. George, “Microstructure and properties of a high-strength Cu-Ni-Si-Co-Zr alloy,” J. Mater. Eng. Perform., vol. 22, no. 7, pp. 2115–2120, 2013, https://doi.org/10.1007/s11665-013-0482-6.Search in Google Scholar

[4] Q. Lei, Z. Li, T. Xiao, et al.., “A new ultrahigh strength Cu-Ni-Si alloy,” Intermetallics, vol. 42, pp. 77–84, 2013, https://doi.org/10.1016/j.intermet.2013.05.013.Search in Google Scholar

[5] M. Gholami, J. Vesely, I. Altenberger, et al.., “Effects of microstructure on mechanical properties of CuNiSi alloys,” J. Alloys Compd., vol. 696, pp. 201–212, 2017, https://doi.org/10.1016/j.jallcom.2016.11.233.Search in Google Scholar

[6] Y. Tang, G. Zhu, Y. Kang, L. Yue, and X. Jiao, “Effect of microstructure on the fatigue crack growth behavior of Cu-Be-Co-Ni alloy,” J. Alloys Compd., vol. 663, pp. 784–795, 2016, https://doi.org/10.1016/j.jallcom.2015.12.017.Search in Google Scholar

[7] J. Y. Cheng, B. B. Tang, F. X. Yu, and B. Shen, “Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging,” J. Alloys Compd., vol. 614, pp. 189–195, 2014, https://doi.org/10.1016/j.jallcom.2014.06.089.Search in Google Scholar

[8] X. Xiao, Z. Yi, T. Chen, R. Liu, and H. Wang, “Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy,” J. Alloys Compd., vol. 660, pp. 178–183, 2016, https://doi.org/10.1016/j.jallcom.2015.11.103.Search in Google Scholar

[9] R. Monzen and C. Watanabe, “Microstructure and mechanical properties of Cu-Ni-Si alloys,” Mater. Sci. Eng. A, vol. 483, no. 484, pp. 117–119, 2008, https://doi.org/10.1016/j.msea.2006.12.163.Search in Google Scholar

[10] Z. Li, Z. Y. Pan, Y. Y. Zhao, Z. Xiao, and M. P. Wang, “Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy,” J. Mater. Res., vol. 24, no. 6, pp. 2123–2129, 2009, https://doi.org/10.1557/jmr.2009.0251.Search in Google Scholar

[11] Y. Tang, Y. Kang, L. Yue, and X. Jiao, “Mechanical properties optimization of a Cu-Be- Co-Ni alloy by precipitation design,” J. Alloys Compd., vol. 695, pp. 613–625, 2017, https://doi.org/10.1016/j.jallcom.2016.11.014.Search in Google Scholar

[12] Y. J. Zhou, K. X. Song, J. D. Xing, and Y. M. Zhang, “Precipitation behavior and properties of aged Cu-0.23Be-0.84Co alloy,” J. Alloys Compd., vol. 658, pp. 920–930, 2015, https://doi.org/10.1016/j.jallcom.2015.10.290.Search in Google Scholar

[13] A. Rotem, D. Shechtman, and A. Rosen, “Correlation among microstructure, strength, and electrical conductivity of Cu-Ni-Be alloy,” Metall. Trans. A, vol. 19, pp. 2279–2285, 1988, https://doi.org/10.1007/BF02645051.Search in Google Scholar

[14] B. Grzegorczyk, “Instability of plastic deformation in low-alloy copper alloys,” Solid State Phenom., vol. 275, pp. 113–123, 2018, https://doi.org/10.4028/www.scientific.net/SSP.275.113.Search in Google Scholar

[15] A. Y. Khereddine, F. H. Larbi, M. Kawasaki, T. Baudin, D. Bradai, and T. G. Langdon, “An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP,” Mater. Sci. Eng. A, vol. 576, pp. 149–155, 2013, https://doi.org/10.1016/j.msea.2013.04.004.Search in Google Scholar

[16] H. Watanabe, T. Kunimine, C. Watanabe, R. Monzen, and Y. Todaka, “Tensile deformation characteristics of a Cu−Ni−Si alloy containing trace elements processed by high-pressure torsion with subsequent aging,” Mater. Sci. Eng. A, vol. 730, pp. 10–15, 2018, https://doi.org/10.1016/j.msea.2018.05.090.Search in Google Scholar

[17] V. Segal, The Method of Material Preparation for Subsequent Working, USSR Nr. 575892, Soviet Union, 1977.Search in Google Scholar

[18] V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy, and V. I. Kopylov, “Plastic Working of Metals by Simple Shear,” Russian Metal., vol. 1, pp. 99–105, 1981.Search in Google Scholar

[19] R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci., vol. 51, no. 7, pp. 881–981, 2006, https://doi.org/10.1016/j.pmatsci.2006.02.003.Search in Google Scholar

[20] R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci., vol. 45, pp. 103–189, 2000, https://doi.org/10.1016/S0079-6425(99)00007-9.Search in Google Scholar

[21] Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: a wealth of challenging science,” Acta Mater., vol. 61, pp. 782–817, 2013, https://doi.org/10.1016/j.actamat.2012.10.038.Search in Google Scholar

[22] Z. Horita, T. Fujinami, and T. G. Langdon, “The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties,” Mater. Sci. Eng. A, vol. 318, nos. 1–2, pp. 34–41, 2001, https://doi.org/10.1016/S0921-5093(01)01339-9.Search in Google Scholar

[23] F. H. Larbi, H. Azzeddine, T. Baudin, et al.., “Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing,” J. Alloys Compd., vol. 638, pp. 88–94, 2015, https://doi.org/10.1016/j.jallcom.2015.03.062.Search in Google Scholar

[24] S. H. Atapek, “Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy,” Mater. Test., vol. 57, no. 1, pp. 17–21, 2015, https://doi.org/10.3139/120.110669.Search in Google Scholar

[25] A. Kizilaslan and I. Altinsoy, “The mechanism of two-step increase in hardness of precipitation hardened CuCoNiBe alloys and characterization of precipitates,” J. Alloys Compd., vol. 701, pp. 116–121, 2017, https://doi.org/10.1016/j.jallcom.2017.01.101.Search in Google Scholar

[26] M. Demirtas, Microstructural, mechanical and tribological characterization of Cu-Co-Ni-Be alloy processed via equal channel angular pressing, Mater. Today Commun., vol. 28, 2021, Art no. 102676, https://doi.org/10.1016/j.mtcomm.2021.102676.Search in Google Scholar

[27] A. Gupta, K. K. Saxena, A. Bharti, J. Lade, K. Chadha, and P. R. Paresi, “Influence of ECAP processing temperature and number of passes on hardness and microstructure of Al-6063,” Adv. Mater. Process. Technol., vol. 2021, pp. 1–12, 2021, https://doi.org/10.1080/2374068X.2021.1953917.Search in Google Scholar

[28] T. G. Langdon, “Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement,” Acta Mater., vol. 61, pp. 7035–7059, 2013, https://doi.org/10.1016/j.actamat.2013.08.018.Search in Google Scholar

[29] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scr. Mater., vol. 35, pp. 143–146, 1996, https://doi.org/10.1016/1359-6462(96)00107-8.Search in Google Scholar

[30] H. P. Stüwe, “Equivalent strains in severe plastic deformation,” Adv. Eng. Mater., vol. 5, pp. 291–295, 2003, https://doi.org/10.1002/adem.200310085.Search in Google Scholar

[31] Y. Mishima, T. Okubo, and R. Shiromizu, “Ageing, Reversion and Reageing of Copper-Beryllium Alloys”, Trans. Jap. Inst. Metals, vol. 10, 1969, pp. 73–80, https://doi.org/10.2320/matertrans1960.10.73.Search in Google Scholar

[32] J. Chen, Y. Su, Q. Zhang, et al.., “Enhancement of strength-ductility synergy in ultrafine-grained Cu-Zn alloy prepared by ECAP and subsequent annealing,” J. Mater. Res. Technol., vol. 17, pp. 433–440, 2022, https://doi.org/10.1016/j.jmrt.2022.01.026.Search in Google Scholar

[33] E. O. Hall, “The deformation and ageing of mild steel: III Discussion of results,” Proc. Phys. Soc. B, vol. 64, no. 9, 1951, pp. 747–753, https://doi.org/10.1088/0370-1301/64/9/303.Search in Google Scholar

[34] N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst., vol. 174, pp. 25–28, 1953.Search in Google Scholar

[35] N. V. Malyar, H. Springer, J. Wichert, G. Dehm, and C. Kirchlechner, “Synthesis and mechanical testing of grain boundaries at the micro and sub-micro scale,” Mater. Test., vol. 61, no. 1, pp. 5–18, 2019, https://doi.org/10.3139/120.111286.Search in Google Scholar

[36] O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, “High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships,” Curr. Opin. Solid State Mater. Sci., vol. 15, no. 4, pp. 141–168, 2011, https://doi.org/10.1016/j.cossms.2011.04.002.Search in Google Scholar

[37] P. Frint and M. F.-X. Wagner, “Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy,” Acta Mater., vol. 176, pp. 306–317, 2019, https://doi.org/10.1016/j.actamat.2019.07.009.Search in Google Scholar

[38] Y. M. Wang and E. Ma, “Three strategies to achieve uniform tensile deformation in a nanostructured metal,” Acta Mater., vol. 52, pp. 1699–1709, 2004, https://doi.org/10.1016/j.actamat.2003.12.022.Search in Google Scholar

[39] A. Ma, J. Jiang, N. Saito, et al.., “Improving both strength and ductility of a Mg alloy through a large number of ECAP passes,” Mater. Sci. Eng. A, vols. 513–514, pp. 122–127, 2009, https://doi.org/10.1016/j.msea.2009.01.040.Search in Google Scholar

[40] R. O. Ritchie, “The conflicts between strength and toughness,” Nat. Mater., vol. 10, pp. 817–822, 2011, https://doi.org/10.1038/nmat3115.Search in Google Scholar PubMed

[41] Y. Wei, Y. Li, L. Zhu, et al.., Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins, Nat. Commun., vol. 5, 2014, Art no. 3580, https://doi.org/10.1038/ncomms4580.Search in Google Scholar PubMed PubMed Central

[42] M. Kato, T. Fujii, and S. Onaka, “Dislocation bow-out model for yield stress of ultra-fine grained materials,” Mater. Trans., vol. 49, no. 6, pp. 1278–1283, 2008, https://doi.org/10.2320/matertrans.MRA2008012.Search in Google Scholar

[43] T. Tsuru, Origin of tension-compression asymmetry in ultrafine-grained fcc metals, Phys. Rev. Mater., vol. 1, 2017, Art no. 033604, https://doi.org/10.1103/PhysRevMaterials.1.033604.Search in Google Scholar

[44] S. Cheng, J. A. Spencer, and W. W. Milligan, “Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals,” Acta Mater., vol. 51, no. 15, pp. 4505–4518, 2003, https://doi.org/10.1016/S1359-6454(03)00286-6.Search in Google Scholar

Published Online: 2022-09-06
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2022-0091/pdf
Scroll to top button