Startseite Effect of micro and nano-sized ZrSiO4 particles on the friction and wear properties of polymer matrix composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of micro and nano-sized ZrSiO4 particles on the friction and wear properties of polymer matrix composites

  • Banu Sugözü ORCID logo EMAIL logo , Behcet Dağhan , Ahmet Akdemir und İlker Sugözü
Veröffentlicht/Copyright: 6. September 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the size effect of zircon (ZrSiO4) on the tribological characteristics of polymer matrix friction composites were investigated. Hence, four friction composites containing micro and nano-sized zircon particles (5 and 10 wt%) were developed and produced using powder metallurgy method. Their wear and friction characteristics were examined using a friction-wear test device. The weight loss and specific wear rate were measured and compared with that obtained for microsized zircon particles. The surfaces of samples were analyzed using a scanning electron microscope, and less wear was observed in the samples containing nano-sized zircon particles. The results revealed that the size of abrasive particles plays a key role in enhancing the friction coefficient and friction stability.


Corresponding author: Banu Sugözü, Mechanical Engineering, Mersin University, Ciftlikkoy Campus, 33343 Mersin, Yenisehir, Turkey, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] V. L. Popov, Contact Mechanics and Friction, 2nd ed. Berlin, Germany, Springer, 2017.10.1007/978-3-662-53081-8Suche in Google Scholar

[2] S. W. Yoon, M. W. Shin, W. G. Lee, and H. Jang, “Effect of surface contact conditions on the stick–slip behavior of brake friction material,” Wear, vols. 294–295, pp. 305–312, 2012, https://doi.org/10.1016/j.wear.2012.07.011.Suche in Google Scholar

[3] Y. Ma, G. S. Martynková, M. Valášková, V. Matějka, and Y. Lu, “Effects of ZrSiO4 in non-metallic brake friction materials on friction performance,” Tribol. Int., vol. 41, no. 3, pp. 166–174, 2008, https://doi.org/10.1016/j.triboint.2007.07.004.Suche in Google Scholar

[4] E. J. Lee, H. J. Hwang, W. G. Lee, K. H. Cho, and H. Jang, “Morphology and toughness of abrasive particles and their effects on the friction and wear of friction materials: a case study with zircon and quartz,” Tribol. Lett., vol. 37, no. 3, pp. 637–644, 2010, https://doi.org/10.1007/s11249-009-9561-0.Suche in Google Scholar

[5] M. Boz and A. Kurt, “The effect of Al2O3 on the friction performance of automotive brake friction materials,” Tribol. Int., vol. 40, no. 7, pp. 1161–1169, 2007, https://doi.org/10.1016/j.triboint.2006.12.004.Suche in Google Scholar

[6] B. Sugözü, “Tribological properties of brake friction materials containing fly ash,” Ind. Lubric. Tribol., vol. 70, no. 5, pp. 902–906, 2018, https://doi.org/10.1108/ILT-04-2017-0100.Suche in Google Scholar

[7] S. S. Kim, H. J. Hwang, M. W. Shin, and H. Jang, “Friction and vibration of automotive brake pads containing different abrasive particles,” Wear, vol. 271, nos. 7–8, pp. 1194–1202, 2011, https://doi.org/10.1016/j.wear.2011.05.037.Suche in Google Scholar

[8] B. Öztürk, S. Öztürk, and A. A. Adigüzel, “Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials,” Tribol. Trans., vol. 56, no. 3, pp. 428–441, 2013, https://doi.org/10.1080/10402004.2012.758333.Suche in Google Scholar

[9] K. R. Kumar, K. M. Mohanasundaram, G. Arumaikkannu, and R. Subramanian, “Analysis of parameters influencing wear and frictional behavior of aluminum–fly ash composites,” Tribol. Trans., vol. 55, no. 6, pp. 723–729, 2012, https://doi.org/10.1080/10402004.2012.700763.Suche in Google Scholar

[10] V. Tomášek, G. Kratošová, R. Yun, Y. Fan, and Y. Lu, “Effects of alumina in nonmetallic brake friction materials on friction performance,” J. Mater. Sci., vol. 44, no. 1, pp. 266–273, 2009, https://doi.org/10.1007/s10853-008-3041-z.Suche in Google Scholar

[11] R. Vijay, D. L. Singaravelu, and R. Jayaganthan, “Development and characterization of stainless steel fiber-based copper-free brake liner formulation: a positive solution for steel fiber replacement,” Friction, vol. 8, no. 2, pp. 396–420, 2020, https://doi.org/10.1007/s40544-019-0280-8.Suche in Google Scholar

[12] I. Sugözü, “Investigation of using rice husk dust and ulexite in automotive brake pads,” Mater. Test., vol. 57, no. 10, pp. 877–882, 2015, https://doi.org/10.3139/120.110792.Suche in Google Scholar

[13] I. Sugozu, I. Mutlu, and K. B. Sugozu, “The effect of ulexite to the tribological properties of brake lining materials,” Polym. Compos., vol. 39, no. 1, pp. 55–62, 2018, https://doi.org/10.1002/pc.23901.Suche in Google Scholar

[14] I. Sugozu, I. Mutlu, and K. B. Sugozu, “The effect of colemanite on the friction performance of automotive brake friction materials,” Ind. Lubric. Tribol., vol. 68, no. 1, pp. 92–98, 2016, https://doi.org/10.1108/ILT-04-2015-0044.Suche in Google Scholar

[15] M. W. Shin, Y. H. Kim, and H. Jang, “Effect of the abrasive size on the friction effectiveness and instability of brake friction materials: a case study with zircon,” Tribol. Lett., vol. 55, no. 3, pp. 371–379, 2014, https://doi.org/10.1007/s11249-014-0361-9.Suche in Google Scholar

[16] K. H. Cho, H. Jang, Y. S. Hong, S. J. Kim, R. H. Basch, and J. W. Fash, “The size effect of zircon particles on the friction characteristics of brake lining materials,” Wear, vol. 264, nos. 3–4, pp. 291–297, 2008, https://doi.org/10.1016/j.wear.2007.03.018.Suche in Google Scholar

[17] V. Matějka, Y. Lu, L. Jiao, L. Huang, G. S. Martynková, and V. Tomášek, “Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications,” Tribol. Int., vol. 43, nos. 1–2, pp. 144–151, 2010, https://doi.org/10.1016/j.triboint.2009.05.007.Suche in Google Scholar

[18] X. Shao, Q. Xue, W. Liu, M. Teng, H. Liu, and X. Tao, “Tribological behavior of micrometer- and nanometer-Al2O3-particle-filled poly (phthalazine ether sulfone ketone) copolymer composites used as frictional materials,” J. Appl. Polym. Sci., vol. 95, no. 5, pp. 993–1001, 2005, https://doi.org/10.1002/app.20690.Suche in Google Scholar

[19] B. K. Satapathy and J. Bijwe, “Wear data analysis of friction materials to investigate the simultaneous influence of operating parameters and compositions,” Wear, vol. 256, nos. 7–8, pp. 797–804, 2004, https://doi.org/10.1016/S0043-1648(03)00520-9.Suche in Google Scholar

[20] A. K. Kadiyala, J. Bijwe, and P. Kalappa, “Investigations on influence of nano and micron sized particles of SiC on performance properties of PEEK coatings,” Surf. Coat. Technol., vol. 334, pp. 124–133, 2018, https://doi.org/10.1016/j.surfcoat.2017.11.026.Suche in Google Scholar

[21] J. Bijwe, N. Aranganathan, S. Sharma, N. Dureja, and R. Kumar, “Nano-abrasives in friction materials-influence on tribological properties,” Wear, vol. 296, nos. 1–2, pp. 693–701, 2012, https://doi.org/10.1016/j.wear.2012.07.023.Suche in Google Scholar

[22] K. B. Sugozu, B. Daghan, A. Akdemir, and N. Ataberk, “Friction and wear properties of friction materials containing nano/micro-sized SiO2 particles,” Ind. Lubric. Tribol., vol. 68, no. 2, pp. 259–266, 2016, https://doi.org/10.1108/ILT-06-2015-0083.Suche in Google Scholar

[23] B. Sugözü, “The effect of additive of nano silica, nano alumina and nano zircon abrasive particles on brake lining properties,” Ph.D. dissertation, Dept. Mech. Eng., Selçuk University, Konya, Turkey, 2016.Suche in Google Scholar

[24] TS, 555, Road vehicles – brake linings and pads for friction type brakes, Sep. 2019 [Online]. Available at: https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073089071066110082050100054089089068.Suche in Google Scholar

[25] H. J. Hwang, S. L. Jung, K. H. Cho, Y. J. Kim, and H. Jang, “Tribological performance of brake friction materials containing carbon nanotubes,” Wear, vol. 268, nos. 3–4, pp. 519–525, 2010, https://doi.org/10.1016/j.wear.2009.09.003.Suche in Google Scholar

[26] M. Eriksson and S. Jacobson, “Tribological surfaces of organic brake pads,” Tribol. Int., vol. 33, no. 12, pp. 817–827, 2000, https://doi.org/10.1016/S0301-679X(00)00127-4.Suche in Google Scholar

[27] M. Eriksson, F. Bergman, and S. Jacobson, “On the nature of tribological contact in automotive brakes,” Wear, vol. 252, nos. 1–2, pp. 26–36, 2002, https://doi.org/10.1016/S0043-1648(01)00849-3.Suche in Google Scholar

[28] W. Österle, M. Griepentrog, T. Gross, and I. Urban, “Chemical and microstructural changes induced by friction and wear of brakes,” Wear, vol. 251, nos. 1–12, pp. 1469–1476, 2001, https://doi.org/10.1016/S0043-1648(01)00785-2.Suche in Google Scholar

[29] W. Österle and I. Urban, “Friction layers and friction films on PMC brake pads,” Wear, vol. 257, nos. 1–2, pp. 215–226, 2004, https://doi.org/10.1016/j.wear.2003.12.017.Suche in Google Scholar

[30] H. Düzcükoğlu, Ş. Ekinci, Ö. S. Şahin, A. Avci, M. Ekrem, and M. Ünaldi, “Enhancement of wear and friction characteristics of epoxy resin by multiwalled carbon nanotube and boron nitride nanoparticles,” Tribol. Trans., vol. 58, no. 4, pp. 635–642, 2015, https://doi.org/10.1080/10402004.2014.998358.Suche in Google Scholar

[31] J. S. Raj, T. V. Christy, S. D. Gnanaraj, and B. Sugozu, “Influence of calcium sulfate whiskers on the tribological characteristics of automotive brake friction materials,” Eng. Sci. Technol. Int. J., vol. 23, no. 2, pp. 445–451, 2020, https://doi.org/10.1016/j.jestch.2019.06.007.Suche in Google Scholar

[32] S. Manoharan, R. Vijay, D. L. Singaravelu, and M. Kchaou, “Experimental investigation on the tribo-thermal properties of brake friction materials containing various forms of graphite: a comparative study,” Arabian J. Sci. Eng., vol. 44, no. 2, pp. 1459–1473, 2019, https://doi.org/10.1007/s13369-018-3590-7.Suche in Google Scholar

[33] Y. Lu, M. A. Wright, and T. Policandriotes, “Modeling wear traces of automotive friction materials by cantor set,” Tribol. Trans., vol. 45, no. 2, pp. 258–262, 2002, https://doi.org/10.1080/10402000208982549.Suche in Google Scholar

[34] I. Sugozu, I. Can, and C. Oner, “Investigation of using Calabrian pine cone dust and borax in brake pads,” Ind. Lubric. Tribol., vol. 66, no. 6, pp. 678–684, 2014, https://doi.org/10.1108/ILT-03-2012-0029.Suche in Google Scholar

Published Online: 2022-09-06
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2021-2223/html?lang=de
Button zum nach oben scrollen