Startseite Steel shot peening effects on friction stir welded AA2014-T6 aluminum alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Steel shot peening effects on friction stir welded AA2014-T6 aluminum alloys

  • Kuppusamy Mallieswaran , Shanmugam Rajasekaran , Mari Vinoth Kumar und Chinnasamy Rajendran EMAIL logo
Veröffentlicht/Copyright: 5. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The high-strength aluminum alloy is the potential candidate to replace conventional materials. It has excellent corrosion-resistant, recyclable machinability. The joining of such a type of alloy using fusion welding is very difficult. Solid-state welding, friction stir welding (FSW) has been used. However, this process has attained a maximum joint of 90% of base material strength. The drop of remaining strength is due to the formation of the temperate region in the thermo-mechanically affected area. Most of the researchers have been reported that the failure has observed at the interface. Many techniques have been followed to improve the strength at the temperate region, namely, post-weld heat treatment, backing plate change, sheet position, tool offset, etc. In this study, the shot blasting technique has been used to improve the lost strength in the soft region. From the experimental result, the joint shot-peened with steel shot yielded higher strength than the classical friction stir welded (C-FSW) joints. Moreover, the stability of the shot-peened joint has been conceived 6.9% more than the C-FSW joint.


Corresponding author: Chinnasamy Rajendran, Department of Mechanical Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, 641008, Tamil Nadu, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] O. Ojo, E. Taban, and E. Kaluc, “Friction stir spot welding of aluminum alloys: a recent review,” Mater. Test., vol. 57, nos. 7–8, pp. 609–627, 2015, https://doi.org/10.3139/120.110752.Suche in Google Scholar

[2] M. Selvaraj, K. Rao, G. Selvakumar, and V. Murali, “Effect of thermal history on the tensile strength of a friction stir welded aluminum alloy,” Mater. Test., vol. 60, no. 12, pp. 1184–1190, 2018, https://doi.org/10.3139/120.111269.Suche in Google Scholar

[3] K. Thamilarasan, S. Rajendraboopathy, G. M. Reddy, et al.., “Salt fog corrosion behavior of friction stir welded AA2014-T651 aluminum alloy,” Mater. Test., vol. 58, nos 11–12, pp. 932–938, 2016, https://doi.org/10.3139/120.110941.Suche in Google Scholar

[4] C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji, and P. Selvaraj, “Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy,” Trans. Nonferrous Metals Soc. China, vol. 29, no. 9, pp. 1824–1835, 2019, https://doi.org/10.1016/S1003-6326(19)65090-9.Suche in Google Scholar

[5] C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji, and P. Selvaraj, “Identifying the combination of friction stir welding parameters to attain maximum strength of AA2014-T6 aluminum alloy joints,” Adv. Mater. Process. Technol., vol. 4, no. 1, pp. 100–119, 2018, https://doi.org/10.1080/2374068X.2017.1410687.Suche in Google Scholar

[6] M. Cabibbo, F. Archimede, S. Eleonora, P. Chiara, S. Stefano, and S. Michela, “New approaches to friction stir welding of aluminum light-alloys,” Metals, vol. 10, no. 2, p. 223, 2020, https://doi.org/10.3390/met10020233.Suche in Google Scholar

[7] A. Cakan, U. Mustafa, and K. Emre, “Effect of weld parameters on the microstructure and mechanical properties of dissimilar friction stir joints between pure copper and the aluminum alloy AA7075-T6,” Mater. Test., vol. 61, no. 2, pp. 142–148, 2019, https://doi.org/10.3139/120.111297.Suche in Google Scholar

[8] M. Alamdari, S. Mehdi, M. Babak, M. Abolfazl, and G. Kavan, “Influences of pin profile on the macrostructure and mechanical properties of friction stir welded AA6061-T6 alloy T-joints,” Mater. Test., vol. 57, nos. 11–12, pp. 992–996, 2015, https://doi.org/10.3139/120.110801.Suche in Google Scholar

[9] A. Atak, “Impact of pin less stirring tools with different shoulder profile designs on friction stir spot welded joints,” J. Mech. Sci. Technol., vol. 34, no. 9, pp. 3735–3743, 2020, https://doi.org/10.1007/s12206-020-0825-9.Suche in Google Scholar

[10] A. Ghiasvand, M. Mohammad, T. Jacek, et al.., “Investigation of mechanical and microstructural properties of welded specimens of aa6061-T6 alloy with friction stir welding and parallel-friction stir welding methods,” Materials, vol. 14, no. 20, p. 6003, 2021, https://doi.org/10.3390/ma14206003.Suche in Google Scholar PubMed PubMed Central

[11] S. Devang, W. Li, and V. Patel, “Stationary shoulder friction stir welding–low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW,” Crit. Rev. Solid State Mater. Sci., vol. 32, no. 2, pp. 1–50, 2021. https://doi.org/10.1080/10408436.2021.1935724.Suche in Google Scholar

[12] H. Zhao, Z. Shen, M. Booth, J. Wen, L. Fu, and A. P. Gerlich, “Calculation of welding tool pin width for friction stir welding of thin overlapping sheets,” Int. J. Adv. Manuf. Syst., vol. 98, no. 5, pp. 1721–1731, 2018, https://doi.org/10.1007/s00170-018-2350-x.Suche in Google Scholar

[13] G. Peng, Q. Yan, J. Hu, P. Chen, Z. Chen, and T. Zhang, “Effect of forced air cooling on the microstructures, tensile strength, and hardness distribution of dissimilar friction stir welded AA5A06-AA6061 joints,” Metals, vol. 9, no. 3, p. 304, 2019, https://doi.org/10.3390/met9030304.Suche in Google Scholar

[14] K. Mallieswaran, R. Padmanabhan, and V. Balasubramanian, “Friction stir welding parameters optimization for tailored welded blank sheets of AA1100 with AA6061 dissimilar alloy using response surface methodology,” Adv. Mater. Process. Technol., vol. 4, no. 1, pp. 142–157, 2018, https://doi.org/10.1080/2374068X.2017.1410690.Suche in Google Scholar

[15] A. Kannusamy and R. Ravindran, “Effect of post weld heat treatment and welding parameters on mechanical and corrosion characteristics of friction stir welded aluminium alloy AA2014-T6,” Trans. Can. Soc. Mech. Eng., vol. 43, no. 2, pp. 230–236, 2018, https://doi.org/10.1139/tcsme-2018-0185.Suche in Google Scholar

[16] M. Raturi and A. Bhattacharya, “Mechanical strength and corrosion behavior of dissimilar friction stir welded AA7075-AA2014 joints,” Mater. Chem. Phys., vol. 262, p. 124338, 2021, https://doi.org/10.1016/j.matchemphys.2021.124338.Suche in Google Scholar

[17] Y. Ali, B. Çevik, and N. Kahraman, “Microstructure and mechanical properties of friction stir welded dissimilar 5754-H111-6013-T6 aluminum alloy joints,” Mater. Test., vol. 61, no. 10, pp. 941–946, 2019, https://doi.org/10.3139/120.111404.Suche in Google Scholar

[18] L. Nie, Y. X. Wu, and H. Gong, “Prediction of temperature and residual stress distributions in friction stir welding of aluminum alloy,” Int. J. Adv. Manuf. Syst., vol. 106, no. 7, pp. 3301–3310, 2020, https://doi.org/10.1007/s00170-019-04826-4.Suche in Google Scholar

[19] C. Rajendran, A. Abdulriyazdeen, S. Abishek, A. Aatheeshwaran, and A. Akash, “Prediction of relationship between angular velocity to the pitch line velocity (ω/v) on tensile strength of friction stir welded AA2014-T6 Aluminium alloy joints: angular velocity to pitch line velocity ratio on FSW joints,” Forces in Mechanics, vol. 4, p. 100036, 2021, https://doi.org/10.1016/j.finmec.2021.100036.Suche in Google Scholar

[20] K. Ramanjaneyulu, G. M. Reddy, A. V. Rao, and R. Markandeya, “Structure-property correlation of AA2014 friction stir welds: role of tool pin profile,” J. Mater. Eng. Perform., vol. 22, no. 8, pp. 2224–2240, 2013, https://doi.org/10.1007/s11665-013-0512-4.Suche in Google Scholar

[21] A. A. Mustafa, J. Khaled, and L. Wagner, “Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints,” Mater. Charact., vol. 126, pp. 64–73, 2017, https://doi.org/10.1016/j.matchar.2017.02.011.Suche in Google Scholar

[22] L. Peng, S. Sun, and J. Hu, “Effect of laser shock peening on the microstructure and corrosion resistance in the surface of weld nugget zone and heat-affected zone of FSW joints of 7050 Al alloy,” Opt. Laser Technol., vol. 112, pp. 1–7, 2019, https://doi.org/10.1016/j.optlastec.2018.10.054.Suche in Google Scholar

[23] C. Xu, G. Sheng, H. Wang, Y. Jiao, and X. Yuan, “Effect of high energy shot peening on the microstructure and mechanical properties of Mg/Ti joints,” J. Alloys Compd., vol. 695, pp. 1383–1391, 2017, https://doi.org/10.1016/j.jallcom.2016.10.262.Suche in Google Scholar

[24] R. Li, X. Yuan, T. Li, et al.., “Effect of high energy shot peening on the microstructure and mechanical property of AZ31B Mg alloy/HSLA350 steel lap joints,” Int. J. Precis. Eng. Manuf., vol. 22, no. 5, pp. 831–841, 2021, https://doi.org/10.1007/s12541-021-00501-5.Suche in Google Scholar

[25] N. Lin, Y. Wu, H. Gong, D. Chen, and X. Guo, “Effect of shot peening on redistribution of residual stress field in friction stir welding of 2219 aluminum alloy,” Materials, vol. 13, no. 14, p. 3169, 2020, https://doi.org/10.3390/ma13143169.Suche in Google Scholar PubMed PubMed Central

[26] M. Bucior, K. Rafał, A. Kubit, and K. Ochał, “Analysis of the possibilities of improving the selected properties surface layer of butt joints made using the FSW method,” ASTRJ, vol. 14, no. 1, 2020, https://doi.org/10.12913/22998624/111662.Suche in Google Scholar

[27] T. Libor, M. Guagliano, O. Bokůvka, F. Nový, M. Jambor, and Z. Florková, “Influence of severe shot peening on the surface state and ultra-high-cycle fatigue behavior of an AW 7075 aluminum alloy,” J. Mater. Eng. Perform., vol. 26, no. 6, pp. 2784–2797, 2017, https://doi.org/10.1007/s11665-017-2692-9.Suche in Google Scholar

[28] L. Peng, J. Hu, S. Sun, S. Xu, and G. Ren, “Effect of laser shock peening on the microstructural characterization in weld nugget zone of friction stir welded 7050 aluminum alloys,” J. Laser Appl., vol. 30, no. 3, p. 032015, 2018, https://doi.org/10.2351/1.5035483.Suche in Google Scholar

[29] M. A. Atieh, M. R. Allaf, A. Al-Hazaa, M. Barghash, and H. Mubaydin, “Effect of pre-and post-weld shot peening on the mechanical & tribological properties of TIG welded aluminum 6061-T6 alloy,” Trans. Can. Soc. Mech. Eng., vol. 41, no. 2, pp. 197–209, 2017, https://doi.org/10.1139/tcsme-2017-1014.Suche in Google Scholar

[30] B. Dhakal and S. Swaroop, “Laser shock peening as post welding treatment technique,” J. Manuf. Process., vol. 32, pp. 721–733, 2018, https://doi.org/10.1016/j.jmapro.2018.04.006.Suche in Google Scholar

[31] A. Ali, X. An, C. A. Rodopoulos, et al.., “The effect of controlled shot peening on the fatigue behaviour of 2024-T3 aluminium friction stir welds,” Int. J. Fatig., vol. 29, no. 8, pp. 1531–1545, 2007, https://doi.org/10.1016/j.ijfatigue.2006.10.032.Suche in Google Scholar

[32] J. Matuszak, K. Zaleski, A. Skoczylas, K. Ciecieląg, and K. Kęcik, “Influence of semi-random and regular shot peening on selected surface layer properties of aluminum alloy,” Materials, vol. 14, no. 24, p. 7620, 2021, https://doi.org/10.3390/ma14247620.Suche in Google Scholar PubMed PubMed Central

[33] H. Omar, “Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints,” Mater. Sci. Eng., A, vol. 492, nos. 1–2, pp. 168–176, 2008, https://doi.org/10.1016/j.msea.2008.03.017.Suche in Google Scholar

[34] H. Omar, “The effects of laser peening and shot peening on mechanical properties in friction stir welded 7075-T7351 aluminum,” J. Mater. Eng. Perform., vol. 17, no. 5, pp. 688–694, 2018, https://doi.org/10.1007/s11665-007-9163-7.Suche in Google Scholar

[35] D. Mattissen, D. A. Molodov, L. S. Shvindlerman, and G. Gottstein, “Drag effect of triple junctions on grain boundary and grain growth kinetics in aluminium,” Acta Mater., vol. 53, no. 7, pp. 2049–2057, 2005, https://doi.org/10.4028/www.scientific.net/MSF.467-470.777.Suche in Google Scholar

[36] N. Sabarirajan and A. N. Sait, “Optimization and thermal analysis of friction stir welding of AA 6061-AA 8011 joints,” Mater. test., vol. 62, no. 3, pp. 317–328, 2020, https://doi.org/10.3139/120.111473.Suche in Google Scholar

[37] B. S. Yıldız, “Optimal design of automobile structures using moth-flame optimization algorithm and response surface methodology,” Mater. Test., vol. 62, no. 4, pp. 371–377, 2020, https://doi.org/10.3139/120.111494.Suche in Google Scholar

[38] C. Özorak, O. Faik, O. Ebru, and I. Serkan, “Wear and microstructural properties of coatings on Weldox 700 steel,” Mater. Test., vol. 62, no. 6, pp. 645–651, 2020, https://doi.org/10.3139/120.111526.Suche in Google Scholar

[39] S. Kasman and O. Sertan, “Investigations on microstructural and mechanical properties of friction stir welded AA 2024-T351,” Mater. Test., vol. 62, no. 8, pp. 793–802, 2020, https://doi.org/10.3139/120.111555.Suche in Google Scholar

[40] S. Celik and E. Ismail, “Dynamic recrystallization of friction welded AISI 316 stainless steel joints,” Mater. Test., vol. 62, no. 11, pp. 1126–1130, 2020, https://doi.org/10.3139/120.111600.Suche in Google Scholar

[41] T. Sonar, V. Balasubramanian, S. Malarvizhi, T. Venkateswaran, and D. Sivakumar, “An overview on welding of Inconel 718 alloy-Effect of welding processes on microstructural evolution and mechanical properties of joints,” Mater. Charact., vol. 174, p. 110997, 2021, https://doi.org/10.1016/j.matchar.2021.110997.Suche in Google Scholar

[42] T. Sonar, V. Balasubramanian, T. Venkateswaran, D. Sivakumar, and S. Konovalov, “Potentiodynamic corrosion behavior and microstructural features of gas tungsten constricted arc (GTCA)-welded superalloy 718 joints,” Mater. Test., vol. 63, no. 12, pp. 1116–1123, 2021, https://doi.org/10.1515/mt-2021-0052.Suche in Google Scholar

Published Online: 2022-08-05
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Effect of heat treatment on the electrical and mechanical properties of a Cu–Ni–Si cast alloy
  3. Effect of isothermal heat treatments under Ms temperature on the microstructures and mechanical properties of commercial high-silicon spring steel
  4. Effect of austenitizing temperature on microstructure and properties of a high-speed cobalt steel
  5. Effect of hot rolling process parameters on the microstructure and mechanical properties of continuously cooled low-carbon high-strength low-alloy (HSLA) steel
  6. Mechanical and tribological properties of a WC-based HVOF spray coated brake disc
  7. Microstructure and mechanical properties of AISI 304/DUROSTAT 500 steel double-sided TIG welds
  8. A Nelder Mead-infused INFO algorithm for optimization of mechanical design problems
  9. Modeling of hexagonal honeycomb hybrids for variation of Poisson’s ratio
  10. Effect of elevated test temperature on the tensile strength and failure mechanism of hot-pressed dissimilar joints of laser ablation-treated AA5754-H111 and thermoplastic composite
  11. Steel shot peening effects on friction stir welded AA2014-T6 aluminum alloys
  12. Improvement of incremental sheet metal forming with the help of a pressurised fluid system
  13. Nugget formation, microstructural features and strength of resistance spot welded cold-rolled dual-phase steel lap joints for automotive applications
  14. African vultures optimization algorithm for optimization of shell and tube heat exchangers
  15. Effect of welding current on properties of activated gas tungsten arc super duplex stainless steel welds
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2021-2173/html
Button zum nach oben scrollen