Home Effect of heat treatment on the electrical and mechanical properties of a Cu–Ni–Si cast alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of heat treatment on the electrical and mechanical properties of a Cu–Ni–Si cast alloy

  • Ş. Hakan Atapek EMAIL logo , Katharina von Klinski-Wetzel and Martin Heilmaier
Published/Copyright: August 5, 2022
Become an author with De Gruyter Brill

Abstract

The electrical and mechanical properties of a Cu–2.50Ni–0.50Si–0.45Cr–0.25Co–0.25Zr (wt%) cast alloy were investigated. The alloy produced as billet material by arc melting technique was solution annealed at 900 °C for 2 h, quenched in water, and aged at 350–500 °C for 2–192 h. The electrical conductivity of the heat-treated alloy was measured using an Eddy current apparatus, and the mechanical properties were determined using hardness measurements and compression tests applied between room temperature and 600 °C. Microstructural characterization of the cast and aged alloys was carried using light optical and scanning electron microscopy to characterize the precipitated phases within the Cu solid solution matrix. It is found that (i) very fine δ-Ni2Si precipitates in the matrix of cast alloy aged at 400 °C for 72 h give an optimal combination of hardness and conductivity and (ii) the aged alloy has a higher yield strength than the cast one at all temperatures investigated.


Corresponding author: Ş. Hakan Atapek, Kocaeli University, Kocaeli, 41001, Turkey, E-mail:

Acknowledgment

The authors wish to acknowledge Sağlam Metal Co. for their support in providing the cast alloy used in this study.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] S. Dymek, P. Kwaśniewski, M. Blicharski, and T. A. Knych, “Electron microscopy investigation of ageing behavior in a Cu–Ni–Si alloy,” Solid State Phenom., vol. 186, pp. 267–270, 2012, https://doi.org/10.4028/www.scientific.net/SSP.186.267.Search in Google Scholar

[2] H. Tsubakino, R. Nozato, and A. Yamamoto, “Precipitation sequence for simultaneous continuous and discontinuous modes in Cu–Be binary alloys,” Mater. Sci. Technol., vol. 9, no. 4, pp. 288–294, 1993, https://doi.org/10.1179/mst.1993.9.4.288.Search in Google Scholar

[3] L. Yagmur, O. Duygulu, and B. Aydemir, “Investigation of metastable γ’ precipitate using HRTEM in aged Cu–Be alloy,” Mater. Sci. Eng. A, vol. 528, no. 12, pp. 4147–4151, 2011, https://doi.org/10.1016/j.msea.2011.01.114.Search in Google Scholar

[4] Ş. H. Atapek, “Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy,” Mater. Test., vol. 57, no. 1, pp. 17–21, 2015, https://doi.org/10.3139/120.110669.Search in Google Scholar

[5] M. Jovanović, B. Djurić, D. Drobnjak, O. Nešić, and R. Kostić, “Aging of Cu–Be alloys with and without cobalt,” Mater. Sci. Technol., vol. 2, no. 2, pp. 122–128, 1986, https://doi.org/10.1179/mst.1986.2.2.122.Search in Google Scholar

[6] W. Ozgowicz, E. Kalinowska-Ozgowicz, and B. Grzegorczyk, “Thermomechanical treatment of low-alloy copper alloys of the kind CuCo2Be and CuCo1NiBe,” J. Achiev. Mater. Manuf. Eng., vol. 46, no. 2, pp. 161–168, 2011.Search in Google Scholar

[7] H. Cao, Y. Wang, Z. Zheng, and A. Xian, “Properties of CuCr contact materials with low chromium content and fine particles,” Trans. Nonferrous Met. Soc. China, vol. 13, no. 4, pp. 930–932, 2003.Search in Google Scholar

[8] A. Chbihi, X. Sauvage, and D. Blavette, “Atomic scale investigation of Cr precipitation in copper,” Acta Mater., vol. 60, no. 11, pp. 4575–4585, 2012, https://doi.org/10.1016/j.actamat.2012.01.038.Search in Google Scholar

[9] P. Liu, B. X. Kang, X. G. Cao, J. L. Huang, and H. C. Gu, “Strengthening mechanisms in a rapidly solidified and aged Cu–Cr alloy,” J. Mater. Sci., vol. 35, no. 7, pp. 1691–1694, 2000, https://doi.org/10.1023/A:1004760014886.10.1023/A:1004760014886Search in Google Scholar

[10] K. von Klinski-Wetzel, C. Kowanda, M. Boning, M. Heilmaier, and F. E. H. Muller, “Parameters influencing the electrical conductivity of CuCr alloys,” in Proc. 25th International Symposium on Discharges and Electrical Insulation in Vacumm, Tomsk, Russia, Institute of High Current Electronics, 2012, pp. 392–395.10.1109/DEIV.2012.6412536Search in Google Scholar

[11] E. Shizuya and T. J. Konno, “A study on age hardening in Cu–Ag alloys by transmission electron microscopy,” Front. Mater. Res., vol. 10, pp. 217–226, 2008, https://doi.org/10.1007/978-3-540-77968-1_16.Search in Google Scholar

[12] H. Cho, B. S. Lee, B. H. Kang, and K. Y. Kim, “Ageing behavior of Cu–Ag alloys,” Adv. Mater. Res., vols. 47–50, pp. 1051–1054, 2008, https://doi.org/10.4028/www.scientific.net/AMR.47-50.1051.Search in Google Scholar

[13] Y. Sakai and H. J. Schneider-Muntau, “Ultra-high strength, high conductivity Cu–Ag alloy wires,” Acta Mater., vol. 45, no. 3, pp. 1017–1023, 1997, https://doi.org/10.1016/S1359-6454(96)00248-0.Search in Google Scholar

[14] R. Bauer, B. F. Rheingans, and E. J. Mittemeijer, “The kinetics of the precipitation of Co from supersaturated Cu–Co alloy,” Metall. Mater. Trans., vol. 42, pp. 1750–1759, 2011, https://doi.org/10.1007/s11661-010-0594-7.Search in Google Scholar

[15] P. Liu, J. Su, Q. Dong, and H. Li, “Microstructure and properties of Cu–Cr–Zr alloy after rapidly solidified aging and solid solution aging,” J. Mater. Sci. Technol., vol. 21, no. 4, pp. 475–478, 2005.Search in Google Scholar

[16] J. P. Tu, W. X. Qi, Y. Z. Yang et al.., “Effect of aging treatment on the electrical sliding wear behavior of Cu–Cr–Zr alloy,” Wear, vol. 249, no. 10, pp. 1021–1027, 2001, https://doi.org/10.1016/S0043-1648(01)00843-2.Search in Google Scholar

[17] G. Durashevich, V. Cvetkovski, and V. Jovanovich, “Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy,” Bull. Mater. Sci., vol. 25, no. 1, pp. 59–62, 2002, https://doi.org/10.1007/BF02704596.Search in Google Scholar

[18] M. Li, J. K. Heuer, J. F. Stubbins, and D. J. Edwards, “Fracture behavior of high-strength, high-conductivity copper alloys,” J. Nucl. Mater., vol. 283, pp. 977–981, 2000, https://doi.org/10.1016/S0022-3115(00)00316-0.Search in Google Scholar

[19] A. D. Ivanov, A. K. Nikolaev, G. M. Kalinin, and M. E. Rodin, “Effect of heat treatments on the properties of CuCrZr alloys,” J. Nucl. Mater., vols. 307–311, no. 1, pp. 673–676, 2002, https://doi.org/10.1016/S0022-3115(02)01110-8.Search in Google Scholar

[20] K. R. Anderson and J. R. Groza, “Microstructural size effects in high-strength high-conductivity Cu–Cr–Nb alloys,” Metall. Mater. Trans. A, vol. 32, pp. 1211–1224, 2001, https://doi.org/10.1007/s11661-001-0130-x.Search in Google Scholar

[21] D. P. Lu, J. Wang, W. J. Zeng, Y. Liu, L. Lu, and B. D. Sun, “Study on high-strength and high-conductivity Cu–Fe–P alloys,” Mater. Sci. Eng. A, vol. 421, nos. 1–2, pp. 254–259, 2006, https://doi.org/10.1016/j.msea.2006.01.068.Search in Google Scholar

[22] H. Fernee, J. Nairn, and A. Atrens, “Precipitation hardening of Cu–Fe–Cr alloys: part I. Mechanical and electrical properties,” J. Mater. Sci., vol. 36, pp. 2711–2719, 2001, https://doi.org/10.1023/A:1017916930459.10.1023/A:1017916930459Search in Google Scholar

[23] Y. Li, R. Liu, and F. Xu, “Effect of aging treatment on the thermal stability and properties of Cu–10Fe–3Ag in situ composites,” Adv. Mater. Res., vol. 366, pp. 343–346, 2011, https://doi.org/10.4028/www.scientific.net/AMR.366.343.Search in Google Scholar

[24] D. Zhao, Q. M. Dong, P. Liu, B. X. Kang, J. L. Huang, and Z. H. Jin, “Aging behavior of Cu–Ni–Si alloy,” Mater. Sci. Eng. A, vol. 361, nos. 1–2, pp. 93–99, 2003, https://doi.org/10.1016/S0921-5093(03)00496-9.Search in Google Scholar

[25] S. A. Lockyer and F. W. Noble, “Precipitate structure in a Cu–Ni–Si alloy,” J. Mater. Sci., vol. 29, no. 1, pp. 218–226, 1994, https://doi.org/10.1007/BF00356596.Search in Google Scholar

[26] D. M. Zhao, Q. M. Dong, P. Liu, B. X. Kang, J. L. Huang, and Z. H. Jin., “Structure and strength of the age hardened Cu–Ni–Si alloy,” Mater. Chem. Phys., vol. 79, no. 1, pp. 81–86, 2003, https://doi.org/10.1016/S0254-0584(02)00451-0.Search in Google Scholar

[27] X. Z. Zhou and Y. C. Su, “A novel Cu–Ni–Zn–Al alloy with high strength through precipitation hardening,” Mater. Sci. Eng. A, vol. 527, no. 20, pp. 5153–5156, 2010, https://doi.org/10.1016/j.msea.2010.04.089.Search in Google Scholar

[28] S. Semboshi, T. Nishida, H. Numakura, T. Al-Kassab, and R. Kirchheim, “Effects of aging temperature on electrical conductivity and hardness of Cu-3 at. Pct Ti alloy aged in a hydrogen atmosphere,” Metall. Mater. Trans. A, vol. 42, pp. 2136–2143, 2011, https://doi.org/10.1007/s11661-011-0637-8.Search in Google Scholar

[29] T. J. Konno, R. Nishio, S. Semboshi, T. Ohsuna, and E. Okunishi, “Aging behavior of Cu–Ti–Al alloy observed by transmission electron microscopy,” J. Mater. Sci., vol. 43, no. 11, pp. 3761–3768, 2008, https://doi.org/10.1007/s10853-007-2233-2.Search in Google Scholar

[30] W. Zheng, R. Chenxing, and W. Suying, “A development study of cast copper alloy with high strength and heat-resistance,” Acta Metall. Sin., vol. 9, pp. 217–222, 1996.Search in Google Scholar

[31] G. Li, B. G. Thomas, and J. F. Stubbins, “Modeling creep and fatigue of copper alloys,” Metall. Mater. Trans. A, vol. 31, no. 10, pp. 2491–2502, 2000, https://doi.org/10.1007/s11661-000-0194-z.Search in Google Scholar

[32] M. Li and S. J. Zinkle, “Physical and mechanical properties of copper and copper alloys,” Compr. Nucl. Mater., vol. 4, pp. 667–690, 2012.10.1016/B978-0-08-056033-5.00122-1Search in Google Scholar

[33] X. P. Xiao, B. Q. Xiong, Q. S. Wang, G. L. Xie, L. J. Peng, and G. X. Huang, “Microstructure and properties of Cu–Ni–Si–Zr alloy after thermomechanical treatments,” Rare Met., vol. 32, pp. 144–149, 2013, https://doi.org/10.1007/s12598-013-0024-2.Search in Google Scholar

[34] S. C. Krishna, J. Srinath, A. K. Jha, B. Pant, S. C. Sharma, and K. M. George, “Microstructure and properties of a high-strength Cu–Ni–Si–Co–Zr alloy,” J. Mater. Eng. Perform., vol. 22, no. 7, pp. 2115–2120, 2013, https://doi.org/10.1007/s11665-013-0482-6.Search in Google Scholar

[35] J. Lei, P. Liu, X. Jing, D. Zhao, and J. Huang, “Aging kinetics in a CuNiSiCr alloy,” J. Mater. Sci. Technol., vol. 20, no. 6, pp. 727–730, 2004.Search in Google Scholar

[36] J. Lei, J. Huang, P. Liu, X. Jing, Z. Dongmei, and X. Zhi, “The effects of aging precipitation on the recrystallization of CuNiSiCr alloy,” J. Wuhan Univ. Technol., vol. 20, no. 1, pp. 21–24, 2005, https://doi.org/10.1007/BF02870865.Search in Google Scholar

[37] C. Watanabe and R. Monzen, “Coarsening of δ-Ni2Si precipitates in a Cu–Ni–Si alloy,” J. Mater. Sci., vol. 46, no. 12, pp. 4327–4335, 2011, https://doi.org/10.1007/s10853-011-5261-x.Search in Google Scholar

[38] A. Popa, S. Constantinescu, J. R. Groza, and I. Bock, “New high-temperature copper alloys,” J. Mater. Eng. Perform., vol. 5, no. 6, pp. 695–698, 1996.10.1007/BF02646904Search in Google Scholar

[39] V. C. Srivastava, A. Schneider, V. Uhlenwinkel, S. N. Ojha, and K. Bauckhage, “Age-hardening characteristic of Cu–2.4Ni–0.6Si alloy produced by the spray forming process,” J. Mater. Process. Technol., vol. 147, no. 2, pp. 174–180, 2004, https://doi.org/10.1016/j.jmatprotec.2003.12.013.Search in Google Scholar

[40] D. Chapman, High Conductivity Coppers for Electrical Engineering, UK, Copper Development Association, CDA Publication 122, 1998.Search in Google Scholar

[41] L. Jia, H. Xie, Z. L. Lu, X. Wang, and S. M. Wang, “Netted structure of grain boundary phases and its influence on electrical conductivity of Cu–Ni–Si system alloy,” Mater. Sci. Technol., vol. 28, no. 2, pp. 243–248, 2012, https://doi.org/10.1179/1743284711Y.0000000054.Search in Google Scholar

[42] R. Monzen and C. Watanabe, “Microstructure and mechanical properties of Cu–Ni–Si alloys,” Mater. Sci. Eng. A, vols. 483–484, no. 7, pp. 117–119, 2008, https://doi.org/10.1016/j.msea.2006.12.163.Search in Google Scholar

[43] Y. Zhang, P. Liu, B. Tian, S. Jia, and Y. Liu, “Aging treatment of Cu–Ni–Si–Ag alloy,” Procedia Eng., vol. 27, no. 2, pp. 1789–1793, 2012, https://doi.org/10.1016/j.proeng.2011.12.651.Search in Google Scholar

[44] R. E. Kusner, J. C. Kuli, and D. B. Veitch, “A copper–nickel–silicon–chromium alloy for mold tooling,” Moldmaking Technol., vol. 8, TG146.11, 2008.Search in Google Scholar

[45] Z. Y. Pan, M. P. Wang, Z. Li, Z. Xiao, and C. Chen, “Thermomechanical treatment of super high strength Cu–8.0Ni–1.8Si alloy,” Trans. Nonferrous Met. Soc. China, vol. 17, no. 1, pp. 1076–1080, 2007.Search in Google Scholar

[46] H. S. Hong, M. S. Kong, N. M. Sung, S. Y. Lee, and K. M. Kim, “An investigation of the properties of Cu–Be–x alloys prepared by horizontal continuous casting,” J. Ceram. Process. Res., vol. 8, no. 3, pp. 164–166, 2007, https://doi.org/10.36410/jcpr.2007.8.3.164.Search in Google Scholar

[47] G. Kalinin and R. Matera, “Comparative analysis of copper alloys for the heat sink of plasma facing components in ITER,” J. Nucl. Mater., vols. 258–263, no. 1, pp. 345–350, 1998, https://doi.org/10.1016/S0022-3115(98)00271-2.Search in Google Scholar

[48] H. M. Ledbetter and E. R. Naimon, “Elastic properties of metals and alloys. II. copper,” J. Phys. Chem. Ref. Data, vol. 3, no. 4, pp. 897–935, 1974, https://doi.org/10.1063/1.3253150.Search in Google Scholar

[49] H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Oxford, Pergamon Press, 1982.Search in Google Scholar

[50] J. H. Schneibel, M. Heilmaier, G. Hasemann, and T. Shanmugasundaram, “Temperature dependence of the strength of fine- and ultrafine-grained materials,” Acta Mater., vol. 59, no. 3, pp. 1300–1308, 2011, https://doi.org/10.1016/j.actamat.2010.10.062.Search in Google Scholar

Published Online: 2022-08-05
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Effect of heat treatment on the electrical and mechanical properties of a Cu–Ni–Si cast alloy
  3. Effect of isothermal heat treatments under Ms temperature on the microstructures and mechanical properties of commercial high-silicon spring steel
  4. Effect of austenitizing temperature on microstructure and properties of a high-speed cobalt steel
  5. Effect of hot rolling process parameters on the microstructure and mechanical properties of continuously cooled low-carbon high-strength low-alloy (HSLA) steel
  6. Mechanical and tribological properties of a WC-based HVOF spray coated brake disc
  7. Microstructure and mechanical properties of AISI 304/DUROSTAT 500 steel double-sided TIG welds
  8. A Nelder Mead-infused INFO algorithm for optimization of mechanical design problems
  9. Modeling of hexagonal honeycomb hybrids for variation of Poisson’s ratio
  10. Effect of elevated test temperature on the tensile strength and failure mechanism of hot-pressed dissimilar joints of laser ablation-treated AA5754-H111 and thermoplastic composite
  11. Steel shot peening effects on friction stir welded AA2014-T6 aluminum alloys
  12. Improvement of incremental sheet metal forming with the help of a pressurised fluid system
  13. Nugget formation, microstructural features and strength of resistance spot welded cold-rolled dual-phase steel lap joints for automotive applications
  14. African vultures optimization algorithm for optimization of shell and tube heat exchangers
  15. Effect of welding current on properties of activated gas tungsten arc super duplex stainless steel welds
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2022-0022/html
Scroll to top button